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Abstract. This paper presents an approximate method to predict the natural frequencies of thin-
walled cylinders. By taking inspiration from a previous work of one of the authors, the starting 
point of the proposed approach is a proper construction of reasonable eigenfunctions. However, a 
new simple tool based on the principle of virtual work has been developed to estimate the natural 
frequencies and the amplitude of vibration without complex numerical resolution. Moreover, the 
applicability of the model is extended to all the most common constraint conditions. The 
identification of the natural frequencies of a continuous cylinder is reduced to an eigenvalue 
problem based on a matrix whose elements depend only on the geometric characteristics of the 
cylinder, the mechanical properties of the material and known numerical parameters. The latter are 
precalculated for given boundary conditions, covering clamped or pinned end constraints. 
Although the proposed formulation can address any constraints combination, only a pinned-pinned 
cylinder is analyzed here for brevity. The reliability of the model was tested against FEM analysis 
results. These comparisons showed that the maximum error versus the exact solutions for the 
lowest natural frequency is around 2% for all the mode shapes of the pinned-pinned case, offering 
an excellent trade-off between accuracy and ease of use. 
Introduction 
The characterization of the vibratory behaviour of thin-walled cylinders attracts researchers’ 
interest due to the wide use of shells as structural elements in several engineering fields. In 
particular, predicting their natural frequency is crucial to prevent severe faults during the 
manufacturing process and the regular use, when time-varying forces often stress these elements. 

Due to the continuous nature of thin-walled cylinders, studying their free vibrations is far more 
complex than a discrete multi-degree-of-freedom system. The integration of the partial differential 
equations rarely leads to an exact closed-form solution, which, however, is rather convoluted [1]. 
More frequently, the resolution is achieved by finite element analysis, numerical approaches [1–
7] or simplified analytical models [8–12]. Nonetheless, the finite element method (FEM) may 
require a convergence analysis and lacks intelligibility. On the other hand, advanced numerical 
techniques enable the resolution of highly accurate models but might be challenging to program, 
while the introduction of simplifying assumptions allows an analytical solution to the problem at 
the expense of accuracy. 

In contrast, the novel model presented here combines good accuracy with ease of use. It takes 
inspiration from [9], which provided the natural frequencies by a simple sequence of explicit 
algebraic equations without the need for complex or iterative numerical resolution. Starting from 
Love’s theory for thin-walled cylinders modified by Reissner and simplified by Donnell’s 
assumptions, the dynamic equilibrium equations are derived as functions of displacements. Then, 
Hamilton’s principle is applied. The assumption of reasonable eigenfunctions, similarly to 
Rayleigh’s method, enables a fast-solving procedure based on the resolution of a cascade of simple 
algebraic equations. Nonetheless, this method applies only to clamped-clamped cylinders and 
involves two different sets of eigenfunctions depending on the mode shape order. 
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In this paper, a reformulation of [9] is proposed. In particular, the equilibrium, compatibility 
and constitutive equations are the same. Nevertheless, different eigenfunctions are hypothesized 
at the beginning and the principle of virtual work is used. Moreover, the cascaded algebraic 
resolutive approach is converted to an eigenvalue problem. The new procedure leads to a faster 
resolution that can be easily adapted to any constraint condition, not just the clamped-clamped 
one. By way of example, this paper present only the results for a pinned-pinned cylinder. The 
reliability of the proposed method is tested by a comparison against FEM analysis results. A 
maximum error of 2% has been obtained, proving that the model is effective and efficient. 
Method 
Given a thin-walled circular cylinder having a finite length l, constant thickness h and mean radius 
a consisting of a material having a density ρ, Young’s modulus E and Poisson’s ratio ν, Fig. 1 
shows the orthogonal local reference system consisting of longitudinal direction x, circumferential 
direction s and radial direction r. 

On the basis of Love’s theory [13] modified by Reissner [14] and Donnell’s assumptions [15], 
the dynamic equilibrium equations and the compatibility equations are derived. Then, the 
constitutive equations are used to express the internal forces and moments as functions of the 
deformations. After substituting the compatibility equations into these latter equations, forces and 
moments are obtained as functions of displacements. Then, these forces and moments are 
introduced into the dynamic equilibrium, and the following equations of motion are obtained: 
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where 𝐾𝐾 = 𝐸𝐸ℎ

1−ν2
. The mathematical procedure performed to obtain Eq. 1 is omitted for brevity but 

can be found in [9]. Nevertheless, if in [9] the equations of motion were used to apply Hamilton’s 
principle, here are introduced in the principle of virtual work (Eq. 2), according to which the virtual 
work 𝛿𝛿𝛿𝛿 of all forces applied to the system, including the inertial actions, is zero for any virtual 
displacements 𝛿𝛿𝑢𝑢𝑥𝑥, 𝛿𝛿𝑢𝑢𝑠𝑠, and 𝛿𝛿𝑢𝑢𝑟𝑟 that meet the constraints. 
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Figure 1. Geometry and local reference system of a thin-walled cylinder. 
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Given the arbitrariness of the virtual displacements 𝛿𝛿𝑢𝑢𝑥𝑥, 𝛿𝛿𝑢𝑢𝑠𝑠 and 𝛿𝛿𝑢𝑢𝑟𝑟 Eq. 2 can be respected only 
if each of the three addends is null. 

Similarly to [9], the assumption of reasonable displacements 𝑢𝑢𝑥𝑥, 𝑢𝑢𝑠𝑠 and 𝑢𝑢𝑟𝑟 as eigenfunctions of 
the problem of free vibrations of cylindrical shells enables a simpler approximated mathematical 
treatment. Free vibrations of a thin-walled circular cylinder consists of n circumferential waves 
and m longitudinal half-waves. Therefore, each mode shape is characterized by a pair of values of 
n and m. Circumferential waves are independent from the boundary conditions, unlike longitudinal 
half-waves which, instead, depend on them, similarly to the transverse vibrations of beams 
subjected to the same constraints. Thus, the same solutions hypothesized in [9], properly chosen 
to respect orthogonality, are also considered here: 
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where 𝑓𝑓𝑟𝑟(𝑥𝑥) is the eigenfunction of the beam subjected to the same constraints of the cylinder 
under analysis. For example, for a pinned-pinned beam, 𝑓𝑓𝑟𝑟(𝑥𝑥) = sin𝛽𝛽𝑖𝑖𝑙𝑙

𝑥𝑥
𝑙𝑙
 , where 𝛽𝛽𝑖𝑖𝑙𝑙 are the roots 

of the related frequency equation sin𝛽𝛽𝑖𝑖𝑙𝑙 = 0. However, the formulation proposed in the following 
is highly general and thus can be extended to any boundary conditions. 

By normalizing Eq. 2 by the cylinder length l and considering Eq. 3, a three-equation system 
is obtained: 
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formulation is derived: 
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where {𝐴𝐴} = {𝐴𝐴𝑥𝑥; 𝐴𝐴𝑠𝑠; 𝐴𝐴𝑟𝑟} is the unknown vector containing the displacements amplitudes in the 
three directions, 𝐼𝐼 ̿is the identity matrix and 𝐷𝐷 � is the following matrix: 
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where 𝐼𝐼13 = ∫ 𝑓𝑓𝑟𝑟1(𝑋𝑋)1
0 𝑓𝑓𝑟𝑟3(𝑋𝑋)𝑑𝑑𝑑𝑑, 𝐼𝐼11 = ∫ 𝑓𝑓𝑟𝑟1(𝑋𝑋)1

0 𝑓𝑓𝑟𝑟1(𝑋𝑋)𝑑𝑑𝑑𝑑, 𝐼𝐼00 = ∫ 𝑓𝑓𝑟𝑟(𝑋𝑋)1
0 𝑓𝑓𝑟𝑟(𝑋𝑋)𝑑𝑑𝑑𝑑, 𝐼𝐼02 =

∫ 𝑓𝑓𝑟𝑟(𝑋𝑋)𝑓𝑓𝑟𝑟2(𝑋𝑋)1
0 𝑑𝑑𝑑𝑑 and 𝐼𝐼04 = ∫ 𝑓𝑓𝑟𝑟(𝑋𝑋)𝑓𝑓𝑟𝑟4(𝑋𝑋)1

0 𝑑𝑑𝑑𝑑; 𝑓𝑓𝑟𝑟𝑘𝑘(𝑋𝑋) is the k-order derivative of 𝑓𝑓𝑟𝑟(𝑋𝑋). Thanks 
to the normalization by the cylinder length, these integrals may be evaluated a priori without 
knowing the actual cylinder dimension. Thus, they need to be calculated only once for any 
constraint condition and then can be exploited for the free vibrations analysis of any cylinder 
subjected to the same constraints. Lastly, as it is apparent from Eq. 5, the natural frequency of any 
thin-walled cylinder can be easily calculated by solving the eigenvalue problem of the matrix 𝐷𝐷�. 
From the three eigenvalues ∆1, ∆2 and ∆3, the natural frequency is obtained as follows: 
 

𝑓𝑓𝑖𝑖 = 1
2𝜋𝜋 �

𝐸𝐸∆
(1−ν2)𝜌𝜌𝑙𝑙2

                 for 𝑖𝑖 = 1, 2, 3             (7) 

 
To sum up, the proposed analysis of free vibrations of cylindrical shells involves the initial 

identification of the eigenfunction describing the transverse free vibrations of a beam subjected to 
the same constraints of the cylinder. Then, a pair of values for m and n is selected, and the matrix 
𝐷𝐷� is populated. The natural frequencies are evaluated from the eigenvalues of the matrix 𝐷𝐷�, while 
its eigenvectors contain the displacements amplitude ratios of each modal shape. 
Results 
Table 1 shows the frequency 𝑓𝑓1, 𝑓𝑓2 and 𝑓𝑓3 for a pinned-pinned cylinder characterized by a = 76mm, 
l = 305mm, h = 0.254 mm, ρ = 7833 kg/m3, E = 207 kN/mm2, ν = 0.3. For brevity, only results for 
m ≤ 3 and n ≤ 8 are reported. Nonetheless, they are sufficient to notice that 𝑓𝑓1 is lower by un order 
of magnitude than 𝑓𝑓2 and 𝑓𝑓3; thus, it is the frequency related to the highest risk of the arising of 
redundancy condition. Moreover, 𝑓𝑓1 shows a minimum for fixed m, which occurs for a higher 
value of n if m increases, while 𝑓𝑓2 and 𝑓𝑓3 are monotonically increasing by both n and m. 

 
Table 1. Natural frequencies for m ≤ 3 and n ≤ 8. 

  
n 

m = 1 m = 2 m = 3 
f1 [Hz] f2 [Hz] f3 [Hz] f1 [Hz] f2 [Hz] f3 [Hz] f1 [Hz] f2 [Hz] f3 [Hz] 

1 2,886 10,009 17,209 6,445 14,059 21,944 8,556 17,890 29,228 
2 1,265 14,889 26,403 3,677 18,061 29,947 5,821 21,647 35,508 
3 656 20,923 36,632 2,178 23,194 39,414 3,896 26,222 43,820 
4 423 27,319 47,298 1,396 29,012 49,558 2,681 31,491 53,176 
5 372 33,847 58,183 985 35,177 60,072 1,931 37,225 63,123 
6 431 40,433 69,190 792 41,523 70,807 1,477 43,249 73,434 
7 551 47,048 80,272 751 47,971 81,681 1,227 49,455 83,983 
8 705 53,681 91,403 819 54,481 92,649 1,132 55,780 94,694 
 
Table 2 shows the amplitude ratios only for m ≤ 3 and n = 4, but similar trends are obtained for 

other combinations of m and n. The predominant amplitude at the lowest natural frequency f1 is 
𝐴𝐴𝑟𝑟, so the associated motion is mostly radial (transverse mode of vibration). Conversely, at 
frequencies f2 and f3, 𝐴𝐴𝑥𝑥 and 𝐴𝐴𝑠𝑠 prevail, respectively; thus, the associated modes are called 
longitudinal and circumferential. 
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Table 2. Amplitude ratios for m ≤ 3 and n = 4. 

 m = 1 m = 2 m = 3 
𝐴𝐴𝑥𝑥/𝐴𝐴𝑟𝑟 𝐴𝐴𝑠𝑠/𝐴𝐴𝑟𝑟 𝐴𝐴𝑥𝑥/𝐴𝐴𝑟𝑟 𝐴𝐴𝑠𝑠/𝐴𝐴𝑟𝑟 𝐴𝐴𝑥𝑥/𝐴𝐴𝑟𝑟 𝐴𝐴𝑠𝑠/𝐴𝐴𝑟𝑟 

f1 0.014 0.252 0.011 0.255 0.008 0.249 
f2 3.697 1.897 1.020 2.155 0.521 2.561 
f3 0.240 4.097 0.259 4.380 0.288 4.822 

 
The accuracy of the results was tested by comparing them against those derived from a FEM 

analysis carried out in Ansys 2022, where a thin-walled circular cylinder was analyzed using 
36,433 SHELL181 linear elements. Fig. 3 and Table 3 reveal a high correspondence between the 
FEM results and those provided by the proposed model, with a maximum error of 2.07% for m = 
1 and n = 6. The comparison considers only the frequency f1 for brevity since it is the lowest. 

 
Table 3. Percentage error on the f1 frequency for m ≤ 8 and n ≤ 8. 

 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 
n = 1 -0.0004 -0.0103 -0.0181 -0.0212 -0.0225 -0.0228 -0.0229 -0.0229 
n = 2 0.0106 -0.0254 -0.0427 -0.0550 -0.0628 -0.0675 -0.0704 -0.0723 
n = 3 0.1934 -0.0336 -0.0715 -0.0957 -0.1137 -0.1269 -0.1365 -0.1435 
n = 4 0.9627 0.0093 -0.0921 -0.1365 -0.1681 -0.1927 -0.2120 -0.2222 
n = 5 2.0088 0.1821 -0.0822 -0.1683 -0.2199 -0.2591 -0.7405 -0.3167 
n = 6 2.0702 0.5078 -0.0131 -0.1776 -0.2621 -0.3210 -0.3678 -0.9082 
n = 7 1.5567 0.7645 0.1176 -0.1527 -0.2864 -0.3729 -0.4387 -0.4930 
n = 8 1.0193 0.7233 0.2303 -0.1016 -0.2895 -0.4100 -0.4991 -0.5714 

Conclusions 
Starting from the standard equations for modeling equilibrium, deformations and displacements of 
thin-walled cylinders, this paper used the principle of virtual work to reduce the calculation of the 
natural frequencies to an eigenvalue problem, thanks to the simplifying assumption of 
eigenfunctions deduced from the beam theory. The results for a pinned-pinned cylindrical shell 
were compared to those obtained by a FEM analysis, reporting a maximum error of 2%. Thus, the 
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Figure 2. Comparison between the natural frequency f1 obtained by the model and FEM 
analysis (m ≤ 3 and n ≤ 8). 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 635-640  https://doi.org/10.21741/9781644902431-102 

 

 
640 

novel model combines good accuracy with ease of use, being ideal for preliminary investigation 
of the resonance condition of shell structures. Moreover, it can be potentially extended to any 
boundary conditions: clamped, pinned, and free end cylinders can be addressed by a unique 
formulation. Future works will test the model accuracy with other constraints combinations. 
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