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a b s t r a c t 

This paper is focused on upgrading a unified parametric model, available in the literature, 

that can perform both the analysis and the design of Power-Split Continuously Variable 

Transmissions (PS-CVTs), which are particularly promising to deploy in the hybrid electric 

powertrain. In particular, this work is focused on the analysis of PS-CVTs and proposes a 

new matrix approach for identifying the basic functional parameters underlying the model 

from the constructive layout of the transmission. This new method does not rely on a case- 

specific formulation, thus befits any power-split transmission, regardless of the number of 

planetary and ordinary gear sets and their constructive arrangement. Moreover, it han- 

dles the clutches operations that perform the shift between different constructive layouts, 

therefore it is suitable even for multimode PS-CVTs. 

As a case study, we applied it to the complex multimode PS-CVT of the Cadillac CT6 and 

carried out a comprehensive analysis of its kinematics, mechanical power losses and power 

flows. 

© 2021 Elsevier Ltd. All rights reserved. 

 

 

 

 

1. Introduction 

Significant efforts have been made in recent years to reduce emissions coming from the automotive field. To comply 

with the emission limit values imposed by national and international law, more and more car manufacturers have been 

expanding their product range by introducing powertrain electrification. In this perspective, Hybrid Electric Vehicles (HEVs) 

are emerging as the eco-sustainable solution bound to become the most widespread in the very short term [1–3] . 

The power-split powertrain is the most promising hybrid technology because it decouples the Internal Combustion Engine 

(ICE) speed from the wheels one (like in series hybrid) and it enables the ICE to feed both the electric unit and the wheels

(like in parallel hybrid), even simultaneously [4–8] . The power flows, generated by the propulsors and transmitted to the 

wheels or the battery pack, are handled by the Power-Split Unit (PSU), consisting of Planetary Gear sets (PGs) and fixed-ratio

Ordinary Gear trains (OGs). The electric unit relies on two electric machines, which can act as motors for supporting the ICE

in vehicle propulsion or as generators for recharging the batteries. Their combined use at variable speed is equivalent to a

Continuously Variable Unit (CVU) since it performs kinematically the same role of a mechanical or hydraulic speed variator 

in Power-Split Continuously Variable Transmissions (PS-CVTs). 
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Nomenclature 

Acronyms 

CVU Continuously Variable Unit 

DOF Degree Of Freedom 

FEV Full Electric Vehicle operation 

HEV Hybrid Electric Vehicle 

ICE Internal Combustion Engine 

OG Ordinary Gear set 

PG Planetary Gear set 

PS-CVT Power-Split Continuously Variable Transmission 

PSU Power-Split Unit 

TPM Three-Port Mechanism 

Subscripts 

C, R, S Carrier, Ring gear and Sun gear of a PG 

in, out, i, o, n main ports of the PSU 

x, y, z branches of a TPM 

X, Y, Z shafts of a PG 

Symbols [Overlined powers or torques refer to real working condition] 

[ K ] matrix of constructive constraints 

{ ω} vector of rotational speeds 

k x fixed-ratio gear on the x th branch of a TPM 

N C number of constructive constraints 

N TPM 

number of Three-Port Mechanisms 

P j power flowing through the j th branch 

p j power flowing through the j th branch as a fraction of the input power 

p ′ 
j 

power flowing through the j th branch as a fraction of the output power 

P j | i power flowing through the j th branch of the i th TPM 

P̄ L mechanical power losses 

p̄ L mechanical power losses as a fraction of the input power 

p̄ ′ 
L 

mechanical power losses as a fraction of the output power 

T j torque applied to the j th shaft 

η overall apparent efficiency 

η0 basic efficiency of a PG 

ηZ 
Y/X fixed- Z apparent efficiency of a PG 

ηX/x apparent efficiency of the x th OG 

� torque applied to the out shaft as a fraction of the input torque (overall torque ratio) 

θ j torque applied to the j th shaft as a fraction of the input torque 

τ overall speed ratio 

τ j speed ratio of the j th shaft 

τ# j overall speed ratio for which the j th shaft is motionless (nodal ratio) 

τ j# k speed ratio of the j th shaft when the k th shaft is motionless (corresponding speed ratio) 

τ∗ overall speed ratio for which a PG is synchronous 

φz 
x/y generalized characteristic function of a TPM 

� Willis’ ratio of a PG 

ψ 

Z 
Y/X 

fixed- Z speed ratio of a PG 

ψ̄ 

Z 
X/Y 

adjusted fixed- Z speed ratio of a PG 

ω j rotational speed of the j th shaft 

The simpler PSU arrangement includes only one PG and it is known as Shunt PS-CVTs (input-split or output-split) while 

a more complex mechanical layout with two or more PGs leads to Compound PS-CVTs. Furthermore, the embedding of a 

clutches system results in multimode transmissions, which can generate several internal power flows that better meet the 

requirements of different driving operations. This enables the minimization of the power size of the electric unit, at the 

expense of constructive simplicity [9–11] . 

To date, several authors have proposed a wide variety of methods for studying PS-CVTs [12–35] , even though very few of

them are effective at both analyzing and designing any PSU, constructive complexity notwithstanding. Numerous papers are 

very well detailed (for example [24–28] ) and able to describe some of the key features of specific case studies, but they are
2 
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Fig. 1. Schematic layout of a PS-CVT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lacking in generality. In this scenario, an interesting unified approach was presented for the first time in [36] , based on a few

functional parameters having a direct physical meaning. Among the main novelties presented, there was the introduction of 

a powerful design tool, called design-chart, which allows the designer to visually assess all the eligible constructive solutions 

for PGs and consciously select the best PS-CVT layout. However, the same functional parameters are important for analysis 

purposes too, since they enable the direct calculation of speed, torque, and power flow of any shaft of the transmission.

Therefore, the same authors in [37] addressed a procedure for identifying these functional parameters starting from the 

constructive layout of any power-split transmission with one or two PGs. Lastly, [38] expanded the features of the model

with a straightforward calculation of the mechanical power losses occurring in the PSU and of the real power flows. 

This paper extends the series of studies [36–38] . Even though [36] showed the potentialities of the parametric model in

PS-CVTs design, this new work is focused on its usability for analysis purposes only. Specifically, here we present a direct

matrix approach to calculate the functional parameters from the constructive ones, alternatively to the previous formulation 

[37] . Unlike [37] , which befitted only one- or two-PG PS-CVTs, the new procedure can be swiftly applied to any power-

split transmission, regardless of the number of PGs and operating modes. Furthermore, it does not require any preliminary 

analysis about the functional scheme under examination, nor a standardization procedure for the Willis’ ratios, which was 

necessary for [37] . The new method for the identification of the functional parameters is combined with the advancements

previously presented in [ 36 , 38 ] to perform an exhaustive analysis of an existing power-split transmission. Moreover, the

parametric model is rearranged to study also the full electric vehicle operation. 

The paper is organized as follows. The fundamental equations underpinning the parametric model [36] are reported in 

section 2 . This section also briefly summarizes the swift method addressed in [38] for the calculation of the PSU power

losses. Section 3 makes some minor changes to the addressed model to analyze the transmission in full electric operation. 

Section 4 presents the novel method to calculate the new functional parameters. Lastly, the effectiveness of the new pro- 

cedure and the functionality of the whole model are tested in Section 5 by conducting a comprehensive analysis of the

complex three-PG multimode PS-CVT of the Cadillac CT6. 

2. Theoretical background 

This section summarizes the essentials of the parametric model for PS-CVTs ( Fig. 1 ) presented in [36] by changing both

the independent variables and the functional parameters, to align it with the treatment addressed in [38] . Indeed, [36] used

a normalized speed ratio as a variable and CVU speed ratio and ratio spreads as functional parameters, which are well suited

for a passive mechanical CVU with one Degree Of Freedom (DOF). On the other hand, [38] did not normalize the speed ratio

and introduced new basic parameters that better befits the electric CVU behavior with two DOFs. 

Any PSU is a combination of planetary gear sets, whose branches rotate at linearly dependent speeds, ordinary gear sets, 

whose shafts have proportional speeds, and isokinetic joints, consisting of two or more shafts rotating at the same speed. 

Consequently, for some PSU shafts their rotational speed is proportional to the input speed ( ω in ) , for others to the output

speed ( ω out ) , for still others it is a linear combination of both. In general, the rotational speed of any j th PSU shaft can be

normalized to the input speed and written as: 

τ j = 

ω j 

ω in 

= A j + B j τ (1) 

where τ is the overall speed ratio, defined as the speed ratio between PSU output and input shafts ( τ = ω out / ω in ) , and A j 

or B j are two constant coefficients that can also be zero. The overall transmission ratio τ achieved when a generic k th shaft

is motionless is called nodal ratio: 

τ# k = 

ω out 

ω in 

| ω k =0 (2) 

On the other hand, the value of the remaining speed ratios τ j achieved in correspondence of a nodal ratio τ# k is called

corresponding speed ratio ( j � = k ): 

τ j# k = 

ω j | ω =0 (3) 

ω in 

k 

3 
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Fig. 2. Example of linear CVU speed ratios and meaning of mechanical points and CVU corresponding speed ratios. 

 

 

 

 

 

 

 

 

2.1. CVU kinetostatics 

The nodal ratios referred to the i and o shafts, connected to the CVU (i.e. the electric unit in HEVs), are also called

mechanical points. Mechanical points and CVU corresponding speed ratios are sufficient to comprehensively address the 

ideal kinetostatics of the electric unit, whichever the PSU layout is. Indeed, Fig. 2 is a visual example representing the linear

trend of τo and τi and the physical meaning of the basic functional parameters. Obviously, the slope and the axis intercepts 

of the two lines change with the specific power-split transmission. 

τo = 

ω o 

ω in 

= τo# i 

τ − τ# o 

τ# i − τ# o 

; τi = 

ω i 

ω in 

= τi # o 

τ − τ# i 

τ# o − τ# i 

(4) 

On the other hand, assuming the conventional sign of the power flowing through the PSU main shafts showed in 

Fig. 1 the ideal power balance of the PSU can be written as a function of the speed and torque ratios: 

1 + � τ + θo τo + θi τi = 0 (5) 

where: 

� = 

T out 

T in 
; θo = 

T o 

T in 
; θi = 

T i 
T in 

(6) 

Since the PGs and OGs torques are speed-independent, we obtain the ideal normalized CVU torques θo and θi as functions 

of the basic functional parameters by rewriting Eq. (5) in correspondence of the mechanical points. 

θo = −1 + � τ# i 

τo# i 

; θi = −1 + � τ# o 

τi # o 

(7) 

The power that ideally flows in the CVU shafts can be quickly calculated as a fraction of the input power from the

combination of Eqs. (4) and (7) : 

p o = τo · θo = 

( τ − τ# o ) ( 1 + � τ# i ) 

τ# o − τ# i 

; p i = τi · θi = 

( τ − τ# i ) ( 1 + � τ# o ) 

τ# i − τ# o 

(8) 

By introducing the so-called overall apparent efficiency η [38] , expressed as the opposite of the output power normalized 

to the input one, Eqs. (8) can be expressed as functions of η: 

η = −p out = −P out 

P in 
= −ω out 

ω in 

· T out 

T in 
= −τ � (9) 

p o = 

( τ − τ# o ) ( τ − η τ# i ) 

τ ( τ# o − τ# i ) 
; p i = 

( τ − τ# i ) ( τ − η τ# o ) 

τ
(
τ# i − τ# o ) 

(10) 

η is apparent because is not due to power losses but to the active CVU that can assist the ICE, and thus it is possible that

η > 1 , or charge the battery, thus it is possible that η < 1 without power losses. Indeed, an equation similar to Eqs. (10) were

obtained also in [20] for a merely mechanical PS-CVT with ideal PSU but passive CVU, by the principle of virtual work, and

using ratio spreads as functional parameters. 

Eqs. (8) and (10) show that power flows of the electric unit are fully defined by the mechanical points. Thus, selecting

mechanical points means establishing the power flowing into the electric machines as a function of the overall transmission 

ratio τ and the normalized output power (i.e. η) or, alternatively, as function of τ and the overall torque ratio �. Once

fixed the mechanical points, the definition of the CVU corresponding speed ratios rules the CVU torque ratios. This enables 

the designer to prioritize the characterization of the electric motors during the design and only then to select the construc- 

tive PSU layout since each constructive layout is characterized by univocal functional parameters, but different constructive 

layouts can be arranged by the same functional parameters. 
4 
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Fig. 3. Generic layout of a Three-Port Mechanism. A rounded-corner square indicates the planetary gear set, rhombi indicate the ordinary gear sets. The 

external TPM branches are labeled with lowercase letters, the internal TPM branches are labelled with capital letters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. PSU characterization 

Nodal ratios allow both analyzing and designing any PSU. Even though this paper is focused on PS-CVTs analysis, it is

necessary to summarize also the basic features of the model for the PS-CVTs design. We refer the reader to [36] to learn

more about how the unified parametric method can be exploited for design purposes. 

Any PSU can be modeled as a combination of Three-Port Mechanisms (TPMs). A generic TPM, enclosed in the dashed-line 

rectangle of Fig. 3 , consists of one planetary gear set (represented by a rounded-corner square) and up to three fixed-ratio

gears (rhombi). The constructive parameter that defines a planetary gear train is the Willis’ ratio � , while the ordinary 

gear sets are characterized by the related speed ratio k . The power is assumed positive if entering the TPM. Furthermore,

Fig. 3 clarifies the nomenclature used for TPMs: the shafts directly linked with the PG are generically indicated by X, Y and

Z in capital letters; the shafts connected to the outside of the TPM are indicated by x, y, and z in lowercase letters. In other

words, using X, Y and Z is a general way to refer to the PG Ring gear ( R ), Sun gear ( S ) or Carrier ( C ), while x, y and z are

related to the PSU main ports ( in, out, o, i , …) linked to the TPM. 

The number of TPMs ( N TPM 

) involved in the PSU equals the number of the shafts whose rotational speed is proportional

neither to ω in nor to ω out , but which is a linear combination of both. In other words, each two-way PG whose shafts rotate

at non-proportional speeds ensures the existence of a proper nodal ratio (i.e. a finite and non-zero nodal ratio), which can

be freely selected during the design. Conversely, the nodal ratios referred to the shafts rotating at speeds proportional to 

ω in or ω out equal infinity or zero, respectively. Since the PSU has only four externally accessible ports ( Fig. 1 ), a shunt PS-

CVT having one TPM has only one proper nodal ratio. Indeed, in input-split CVTs one mechanical point is zero, because

a fixed-ratio connection is realized between the output shaft and one of the CVU shafts. On the contrary, in output-split

transmissions, where the input shaft is directly connected to o or i shaft, one mechanical point tends to infinity. 

Moreover, the two mechanical points define the CVU power flows, as addressed in Section 2.1 . Therefore, any further

TPM over two affects neither the CVU ideal power flows nor kinematics. Nonetheless, it can be useful to use more than two

TPMs to arrange multimode transmission (as in the PS-CVT analyzed in Section 5 ). Using three or more TPMs implies the

presence of further main ports, called neutral nodes ( n ), which are isokinetic joints into which two or more branches linked

neither with the CVU nor with the input/output of the driveline are merged. The number of the neutral nodes equals the

number of each additional TPM over two. 

Nodal ratios also govern a set of characteristic functions, defined as the speed ratio between two generic TPM branches 

when the third one is motionless, to the same speed ratio when the third shaft is moving: 

φz 
x/y = 

τx / τy | τz=0 

τx / τy 
= 

τ# z − τ# x 

τ# z − τ# y 

· τ − τ# y 

τ − τ# x 

(11) 

Characteristic functions are a crucial tool for this model because they play an important role in both the design [36] and

analysis stage [ 37 , 38 ]. 

2.2.1. Characteristic functions and PSU functional design 

To minimize the meshing losses of a PG, it should operate as close as possible to its synchronous point within the desired

range of operation. For this purpose, the characteristic functions permit the designer to assure this condition, by relating the 

desired overall transmission ratio for which the PG of a TPM works synchronous ( τ∗) with the PG constructive arrangement

[36] . Indeed, it is: 

φz 
x/y ( τ∗) = 

τx / τy | τz=0 

τx / τy | τ∗
= ψ 

Z 
X/Y (12) 

where ψ 

Z 
X/Y is the ratio between ω X and ω Y of the PG achieved when ω Z = 0 . Since ψ 

C 
R/S 

equals the Willis’ ratio � by

definition, then, once selected the nodal ratios, the characteristic functions match the synchronous condition τ∗ of a PG to 
5 
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its respective Willis’ ratio and a feasible connection between its shafts Carrier, Ring, Sun, and the PSU ports ( in, out, i, o, n 1 ,

…), without directly involving the OGs. 

In a preliminary design stage, the property (12) enables the exploitation of the design-chart [36] , which allows a quick

comparison between the main features of different feasible solutions. The design-chart is a graphical representation of all 

the PSU characteristic functions that take on values comprised within the desired range of Willis’ ratio (preferably from 

−2 / 3 to −1 / 3 [38] ). Choosing one, two, or N curves of the design-chart means to determinate a feasible layout with one,

two, or N TPMs (and thus N proper nodal ratios). Selecting a point from a specific curve means to determine both the PG

Willis’ ratio and the position of the carrier (linked to the main port z ), the ring gear (linked to x ) and the sun gear (linked

to y ), as well as the synchronous point τ∗ of a PG. 

Generally speaking, the number of characteristic functions grows factorially with the number of TPMs (and therefore of 

neutral nodes). Indeed, each TPM can be linked to three main ports out of the available ( N TPM 

+ 2). Furthermore, for each

triad of main ports attached to the TPM, there are P 

3 
3 

= 6 possible ways to arrange the position of carrier, ring and sun gear.

The number of all characteristic functions as a function of N TPM 

is: (
N TPM 

+ 2 

3 

)
· P 

3 
3 = N TPM 

· ( N TPM 

+ 1 ) · ( N TPM 

+ 2 ) (13) 

Cammalleri and Rotella [36] listed explicitly all the 24 characteristic functions for the design of PS-CVTs with up to two

active planetary gear trains. However, Rotella and Cammalleri [38] suggested the more general Eq. (12) , which makes the

computational process independent from the PSU layout and automatable by a simple permutation of the nodal ratios. 

Finally, the ordinary gear sets have the role of tuning the speeds inside the PSU, once chosen the functional parameters

and synthesized the PGs [36] . Indeed, imposing a certain synchronous point for the involved PGs results in constraining the

fixed-ratio gears of the respective TPM: 

k x 

k y 
= 

τx 

τy 
| τ∗ = −τx # y 

τy # x 

· τ∗ − τ# x 

τ∗ − τ# y 

; k x 

k z 
= 

τx 

τz 
| τ∗ = −τx # z 

τz # x 

· τ∗ − τ# x 

τ∗ − τ# z 

(14) 

Using two equations like (14) for each TPM is sufficient to completely arrange the ordinary gear sets. 

2.2.2. Characteristic functions and PSU analysis 

In an analysis stage, the Willis’ ratios of the involved PGs are known parameters as well as the connections between

their shafts and the PSU ports. Thus, Eqs. (11) and (12) can be used to compute the overall transmission ratio corresponding

to the PG synchronism as follows: 

τ∗ = 

�
( τ# z −τ# y 

τ# z −τ# x 

)
τ# x − τ# y 

�
( τ# z −τ# y 

τ# z −τ# x 

)
− 1 

(15) 

where τ# x is the nodal ratio referred to the main port linked with the ring gear, τ# y is referred to the main port linked with

the sun gear and τ# z is referred to the main port linked with the carrier. 

Furthermore, characteristic functions represent the opposite of the ratios between the ideal powers transmitted by two 

shafts of a TPM [36] : 

φz 
x/y = −P y 

P x 
= − p y 

p x 
(16) 

The property (16) is a powerful tool for assessing the ideal power flow distribution in the PSU, as it is addressed in the

next Section 2.3 . 

2.3. PSU mechanical power losses 

The total power losses of the PSU are the sum of the mechanical losses occurring in every PG and OG. These can be

calculated by the swift approximate method proposed in [38] , which is ruled by nodal ratios and characteristic functions. 

In the following, power losses are normalized to the input power and the power flows and torques referred to the real

conditions are indicated by an overline. As it was demonstrated in [38] , the mechanical power losses occurring in an OG

linking the branch x of the TPM to the shaft X of the PG are: 

p̄ L | OG ≈ −
∣∣(1 − ηX/x 

)
p x 

∣∣ (17) 

where ηX/x is the OG efficiency. While the mechanical power losses occurring in a PG are: 

p̄ L | PG ≈ −
∣∣∣∣(1 − ηZ 

Y/X 

)(φz 
x/y − ψ 

Z 
X/Y 

1 − ψ 

Z 
X/Y 

)
p x 

∣∣∣∣ (18) 

in which p x is the ideal normalized power flowing through the x shaft external to the TPM. When possible, it is more conve-

nient to use for p x one of the four PSU external shafts because their power flows are known (1 or η) or directly computable

Eqs. (8) –( (10) ). Otherwise, p x can be easily calculated by using one equation of power conservation in an isokinetic joint
6 
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Table 1 

Relationships between the speed ratio of two PG shafts when the third one is motionless and 

the Willis’ ratio. 

ψ 

C 
R/S ψ 

C 
S/R ψ 

R 
S/C ψ 

R 
C/S ψ 

S 
C/R ψ 

S 
R/C 

� 1 
�

�−1 
�

�
�−1 

1 
1 −� 1 − �

 

 

 

 

 

 

 

 

 

 

 

 

 

 

combined with the property (16) of characteristic functions. Moreover, ψ 

Z 
X/Y = ( ψ 

Z 
Y/X ) 

−1 is the fixed- Z speed ratio of the PG 

and ηZ 
Y/X = ( ηZ 

X/Y ) 
−1 its related apparent efficiency, i.e. 

ψ 

Z 
X/Y = 

ω X − ω Z 

ω Y − ω Z 

= 

ω X 

ω Y 

| ω Z =0 ; ηZ 
Y/X = − P Y 

P X 
| ω Z =0 (19) 

Note that it is also ψ 

Z 
X/Y 

= φz 
x/y ( τ∗) , where τ∗ is the overall speed ratio for which the PG is synchronous (see Eq. (12) ). 

Usually, these parameters are known with reference to the fixed-carrier condition and they are named respectively Willis’ 

ratio � = ψ 

C 
R/S 

and basic efficiency η0 = ηC 
R/S 

. Nevertheless, in some cases it is needed to match a different permutation of X,

Y, Z , depending on which p x TPM power flow is known or more directly computable. In these cases, ψ 

Z 
X/Y 

can be calculated

by the relationships of Table 1 as functions of Willis’ ratio � [38] , while for ηZ 
Y/X 

we propose here a more straightforward

formulation than [38] . Indeed, it is simply: 

ηZ 
Y/X = ψ 

Z 
Y/X / ψ̄ 

Z 
Y/X (20) 

where ψ̄ 

Z 
X/Y is an adjusted fixed- Z speed ratio which can be yet obtained from Table 1 by replacing � with �/η0 . 

Eq. (20) can be obtained from the resolution of the linear system of the equations related to the external torques equi-

librium, the kinematic equation, and the definition of the basic efficiency of a PG. For example, supposing that the fixed- Z

apparent efficiency of our interest is ηS 
R/C 

, we have: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

T̄ C + T̄ R + T̄ S = 0 

� = 

ω R −ω C 
ω S −ω C 

η0 = − T̄ R 
T̄ S 

ω R 
ω S 

∣∣∣
ω C =0 

⇒ 

T̄ R 

T̄ C 
= − 1 

1 − �/ η0 

; ω R 

ω C 

∣∣∣
ω S =0 

= 1 − � = ψ 

S 
R/C (21) 

hence: 

ηS 
R/C = −T R 

T C 

ω R 

ω C 

| ω S =0 = 

1 − �

1 − �/η0 

= ψ 

S 
R/C / ψ 

S 

R/C (22) 

and similarly, for the other cases. Furthermore, it is useful to highlight that since Eq. (18) is valid only if ηZ 
Y/X 

is high,

and this occurs for the common values of η0 if it is � < 0 . 5 or � > 2 [38] , then ηZ 
Y/X 

and its reciprocal ηZ 
X/Y 

can be used

interchangeably in Eq. (18) . In fact, Rotella and Cammalleri [38] have proved that if ηZ 
Y/X 

→ 1 then 1 /ηZ 
Y/X 

∼= 

2 − ηZ 
Y/X 

and

therefore Eq. (18) remains unchanged. This implies that the definition of only Z is sufficient to assess the fixed- Z apparent

efficiency. 

For a given input and output power, the PSU mechanical losses have to be compensated by the electric machines whose

real powers can be directly obtained by reworking the formulas of [38] as follows: 

p o = p o − τo 

τo # i 

[
p L + 

(
∂ p L 
∂τ

+ 

∂ p L 
∂η

η

τ

)
( τ# i − τ ) 

]
; p i = p i −

τi 

τi # o 

[
p L + 

(
∂ p L 
∂τ

+ 

∂ p L 
∂η

η

τ

)
( τ# o − τ ) 

]
(23) 

Once assessed the real CVU power flows, the real torque ratios θ̄o and θ̄i can be swiftly evaluated by dividing p̄ o and p̄ i 
to τo and τi , respectively. 

2.4. CVU electrical power losses 

Eqs. (23) lead to the assessment of the real power that the electric motors have to provide to (or withdraw from) the

PSU. Thus, the calculation of power losses occurring in the electric motors can be performed also at a later stage. More

specifically, by assuming a high and constant efficiency for both electric machines ( ηo and ηi , respectively), the electrical 

power losses in the CVU are simply: 

p̄ L | CV U ≈ −| ( 1 − ηo ) ̄p o | − | ( 1 − ηi ) ̄p i | (24) 

Nonetheless, in practice, the efficiency of electric machines is not constant, but it varies as a function of rotational speed

and torque. Therefore, the CVU power losses for a given operative point can be properly evaluated only if the efficiency map

of the electric machines is available. Moreover, as the addressed model involves dimensionless quantities (normalized to the 
7 
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input speed and torque), it is necessary to know also the ICE torque map and consider a proper control strategy to identify

the operating condition of both the electric machines and the ICE on the maps. Indeed, for required output torque and

speed, the CVU can aid the ICE by providing power or charge the battery by absorbing power, on the basis of the adopted

control strategy that in our approach is modeled by τ and η parameters. 

3. Full electric vehicle 

The parametric model described in the previous section is suitable for comprehensively analyzing any PS-CVT with two 

DOFs for both speeds ( Eqs. (4) ) and torques ( Eqs. (7) ) or powers ( Eqs. (10) ). 

In this section, we rearrange the previous formulas of Section 2 to assess the mechanical power losses occurring in the

PSU and the resultant power flowing into the electric machines in Full Electric Vehicle operation (FEV), whereby the ICE 

is switched off and the vehicle is propelled by the electric motors. Nonetheless, whilst for a power-split functioning it is 

convenient to refer the variables to the input shaft, the normalization to T in and P in is not advisable in FEV modes, as T in is

a reaction torque and P in is null. 

Indeed, in FEV functioning modes the shaft in (directly connected to the ICE) is kept motionless, thus only one kinematic

DOF is available and the speed ratio between any two PSU branches is fixed and PGs are used only for torque multiplication

from electric machines to the output. Therefore, the kinematic relationships (4) computed for ω in = 0 ( τ → ∞ ) can be

normalized to the output speed and are constant: 

ω o 

ω out 
| ω in =0 = 

τo # i 

τ# i − τ# o 

; ω i 

ω out 
| ω in =0 = 

τi # o 

τ# o − τ# i 

; ω o 

ω i 

| ω in =0 = −τo # i 

τi # o 

(25) 

The torques distribution can be derived from the ideal PSU power balance (5) computed for P in = 0 : 

T out ω out + T o ω o + T i ω i = 0 (26) 

By dividing Eq. (26) to ω out and introducing Eqs. (25) , the contribution of both electric motors to the output torque is: 

T out = 

τo # i 

τ# o − τ# i 

T o + 

τi # o 

τ# i − τ# o 

T i (27) 

In other words, given a certain P out requested for vehicle propulsion, the power flowing in one electric motor can be 

freely selected, as opposed to the power-split operation where it would be more convenient to constrain the electric unit 

behavior to the input (ICE) and output powers Eqs. (8) –( (10) ). 

Furthermore, the same method proposed in Section 2.3 enables the assessment of the PSU mechanical power losses 

occurring in FEV modes, if the power losses normalization is not performed to P in as in Eqs. (17) and (18) . However, ηX/x ,

ηZ 
Y/X and ψ 

Z 
X/Y are not affected by the variation of the normalizing power and neither is the characteristic function φz 

x/y ,

being a powers ratio Eq. (16) ). Consequently, for FEV modes, φz 
x/y can be easily computed by Eq. (11) for τ → ∞ , by avoiding

referring the branch x to a branch involving an infinite nodal ratio (such as the shaft in ) to prevent numerical errors in φz 
x/y 

computation. As a result, the mechanical power losses can be normalized to any PSU power flow, if also p x is normalized

to the same power. For convenience, we choose −P out = −P̄ out as reference power (by considering the actual negative sign of 

P out , because coming out from the PSU) and Eqs. (17) and ( (18) become: 

p̄ ′ L | OG ≈ −
∣∣(1 − ηX/x 

)
p ′ x 

∣∣ (28) 

p̄ ′ L | PG ≈ −
∣∣∣∣(1 − ηZ 

Y/X 

)(φz 
x/y − ψ 

Z 
X/Y 

1 − ψ 

Z 
X/Y 

)
p ′ x 

∣∣∣∣ (29) 

where p̄ ′ L = −P̄ L / P out and p ′ x = −P x / P out . 

Moreover, the ideal power balance (26) becomes p ′ o + p ′ 
i 
= 1 , from which p ′ o = 1 − p ′ 

i 
and p ′ 

i 
= 1 − p ′ o . Instead, in real

condition it is: 

p̄ ′ o + p̄ ′ i + p̄ ′ L = 1 (30) 

from which we can derive the real power flowing in one electric motor once fixed the real power flowing in the other motor

and calculated the power losses. However, neither p̄ ′ o nor p̄ ′ 
i 

should take on negative values, thereby avoiding unnecessary 

CVU power recirculation. After assessing the real power ratios of the electric motors, the real torque ratios can be swiftly

evaluated by dividing them by the speed ratios (25). 

4. General matrix approach for the identification of the functional parameters 

According to the previous section, any PS-CVT can be comprehensively described using a unique mathematical model 

based on nodal ratios and corresponding speed ratios. However, generally, manufacturers do not explicitly disclose these 

functional parameters, but they have to be derived from the constructive arrangement of the transmission. A first method 

that meets this objective was presented in [37] . It was based on the identification of four main groups, depending on the
8 
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triad of main external shafts linked to each TPM. The equations for identifying the functional parameters were strictly de- 

pendent on the couple of the involved functional groups. Then, it required the standardization of the Willis’ ratio depending 

on the position of the carrier, the sun gear and the ring gear. Furthermore, this identification procedure was suitable only

for power-split transmissions with one or two TPMs. 

The approach proposed in this section allows the calculation of the functional parameters from the constructive ones in 

a more straightforward way and regardless of the number of TPMs. Moreover, it does not require any case-related formulas, 

thus the computing process is easily automatable if performed in proper numerical software. 

Before performing the calculation approach under consideration, we need to know: 

• constructive parameters of the involved gear sets (i.e. PGs and OGs teeth ratios). 
• mutual connections between the devices; 

The aim is to evaluate the following parameters: 

• nodal ratios, i.e. the mechanical points ( τ# o and τ# i ) and the ones referred to the neutral nodes ( τ# n 1 , τ# n 2 , …); 
• corresponding speed ratios for each nodal ratio. 

As it is explained in Section 2.2 , the number of proper nodal ratios equals the number of TPMs; each nodal ratio implies

as many corresponding speed ratios as the number of TPMs minus one. 

The functional parameters are obtained by performing matrix operations derived from the linear system of the kinematic 

constraints of the PSU: 

[ K ] { ω } = { 0 } (31) 

where [ K ] is the constraints matrix and { ω} is a vector containing the rotational speeds of the PSU. As it will be evident

later, to streamline the computational process, it would be better to sort the element in { ω} so that the elements of the

first rows are the rotational speeds of the main shafts, starting from ω out and ω in and then ω o and ω i , immediately followed

by the ones referred to the neutral nodes and then all the others, and thus { ω} is defined as follows: 

{ ω } = 

[
ω out ω in ω o ω i ω n 1 ω n 2 · · ·

]′ 
(32) 

Each row of the matrix [ K ] reflects the kinematic constraints due to each mechanical device, hence [ K ] is a sparse matrix.

In particular, for the j th PG we can write: 

ω Cj 

(
1 − � j 

)
+ ω Sj 

(
� j 

)
+ ω Rj ( −1 ) = 0 (33) 

where � j is the related Willis’ ratio. For the x th OG it is: 

ω x ( −1 ) + ω X ( k x ) = 0 (34) 

An isokinetic joint linking two shafts is a particular OG with k = 1 . Furthermore, a clutch can be mathematically modeled

by fixed-ratio gears having a constructive ratio tending to ∞ when the clutch links a shaft to the framework, otherwise it

acts as an isokinetic joint between the two involved shafts. Thus, Eq. (34) is sufficient to consider the variation of the

internal connections in the PSU due to a mode shift, making this method well-suited even for multimode transmissions, 

usually complicated to analyze. 

The [ K ] matrix has as many rows as the constraints ( N C ) are, i.e. the number of TPMs plus the further constraints realized

by fixed-ratio gears, isokinetic joints, or clutches. The number of columns of [ K ] equals the number of rows of the { ω} vector,

which is N C + 2 since the PSU has two degrees of freedom. Therefore, Eq. (31) is a linear system in N C equations and N C + 2

variables. By supposing that two of the variables (e.g. ω out and ω in ) are known, we can write the rotational speed of the

remaining PSU shafts as their function. For this purpose, it is necessary to perform a partition of the [ K ] matrix in order to

obtain a two-column matrix [ W ] , linking the rotational speeds of the PSU output and input to the other speeds contained

in { ω} : 

(35) 
9 
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[ K ( 1 , 2 ) ] is a submatrix of [ K ] that includes only its first two columns, while [ K 1 , 2 ] is a submatrix of [ K ] obtained by removing

them. Hence, the previous equation can be rewritten as follows: 

[ K ] { ω } = 

[
K ( 1 , 2 ) 

]{ ω known } + [ K 1 , 2 ] { ω unknown } = { 0 } (36) 

from which we can calculate the column vector of the unknown rotational speeds: 

{ ω unknown } = −[ K 1 , 2 ] 
−1 ·

[
K ( 1 , 2 ) 

]{ ω known } (37) 

In other terms: ⎛ 

⎜ ⎜ ⎝ 

ω o 

ω i 

ω n 1 

. . . 

⎞ 

⎟ ⎟ ⎠ 

N C x1 

= [ W ] 

(
ω out 

ω in 

)
(38) 

where 

[ W ] = −[ K 1 , 2 ] 
−1 ·

[
K ( 1 , 2 ) 

]
(39) 

Note that in Eq. (38) the vector of the unknown rotational speeds contains N C elements. By using the MATLAB notation

that can appear more familiar, Eq. (39) can be considered as follows: 

[ W ] = −[ K ( : , 3 : end ) ] 
−1 

[ K ( : , 1 : 2 ) ] (40) 

At this point, the calculation of the functional parameters from the matrix [ W ] is straightforward. After normalizing

Eq. (38) to ω in we get: ⎛ 

⎜ ⎜ ⎝ 

τo 

τi 

τn 1 

. . . 

⎞ 

⎟ ⎟ ⎠ 

N C x1 

= 

⎡ 

⎢ ⎢ ⎣ 

w 1 , 1 w 1 , 2 

w 2 , 1 w 2 , 2 

. . . 
w N C , 1 

. . . 
w N C , 2 

⎤ 

⎥ ⎥ ⎦ 

(
τ
1 

)
(41) 

The first row of the system is: 

τo = w 1 , 1 τ + w 1 , 2 (42) 

The previous equation computed for τo = 0 leads to the calculation of the nodal ratio τ# o : 

0 = w 1 , 1 τ# o + w 1 , 2 ⇒ τ# o = −w 1 , 2 

w 1 , 1 

(43) 

Obviously, [ W ] is speed-independent, since its terms are derived from the constructive constraints of Eqs. (33) and (34) .

Similarly, by calculating the second row for τi = 0 , we can obtain the nodal ratio τ# i as −w 2 , 2 / w 2 , 1 and so on for the other

nodal ratios. Thus, the nodal ratios are the opposite of the ratio between each element of the second column of [ W ] and the

corresponding element in the first column. This operation is handily viable in MATLAB by using the element-wise division 

to obtain the nodal ratios vector: ⎛ 

⎜ ⎜ ⎝ 

τ# o 

τ# i 

τ# n 1 

. . . 

⎞ 

⎟ ⎟ ⎠ 

N C x1 

= −[ W ( : , 2 ) ] ./ [ W ( : , 1 ) ] (44) 

If the vector { ω} is sorted properly ( Eq. (32) ), we can replace [ W ] with its submatrix [ W 

(1 , ... , N TPM 

) ] , which consists of the

first N TPM 

-th rows of [ W ] , if N TPM 

is the number of involved TPMs and thus of proper nodal ratios. In this way, we avoid

the calculation of the nodal ratios related to the shafts rotating at one speed proportional to the speed of the main shafts

and thus Eq. (44) returns a nodal ratios vector containing non-redundant elements. 

The same simplified [W] matrix allows also the identification of the corresponding speed ratios. Indeed, when for exam- 

ple Eq. (41) is computed for τ = τ# o , it gives the corresponding speed ratios of the mechanical point of the electric machine

O . The same is for the other nodal ratios. By properly assembling all the corresponding speed ratios we get a N TPM 

by N TPM 

square matrix whose diagonal elements are all equal to zero, while the other elements are the corresponding speed ratios: ⎡ 

⎢ ⎢ ⎣ 

0 τo # i τo # n 1 · · ·
τi # o 0 τi # n 1 · · ·
τn 1 # o τn 1 # i 0 · · ·

. . . . . . . . . 

⎤ 

⎥ ⎥ ⎦ 

= 

[
W 

( 1 , ... , N TPM ) 
][τ# o τ# i τ# n 1 . . . 

1 1 1 . . . 

]
2 xN TPM 

(45) 
. . . 
N TPM xN TPM 
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Fig. 4. Constructive layout of the Cadillac CT6 Plug-in HEV power-split CVT (derived from [40] ). 

Table 2 

Cadillac CT6 PS-CVT clutches operations for each of the eleven modes. Engaged 

clutches are marked with X. 

Mode C1 C2 C3 C4 E 

SHUNT 1 X X 

PARALLEL 1 X X X 

COMPOUND 1 X X 

PARALLEL 2 X X X 

COMPOUND 2 X X 

PARALLEL 3 X X X 

SHUNT 2 X X 

FEV 1 X X X 

FEV 2 X X X 

FEV 3 X X X 

FEV 4 X X X 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Example of application 

This section aims to test the functionality of the novel procedure addressed in Section 4 for identifying the functional

parameters of any PS-CVT. To prove the flexibility of the model, we propose an exhaustive analysis of a complex multimode

PS-CVT, the General Motors transmission of the Cadillac CT6 Luxury Sedan with a plug-in hybrid powertrain, whose con- 

structive layout is showed schematically in Fig. 4 . It is derived from the paper [39] submitted by the manufacturer and the

patent [40] . 

The transmission under consideration consists of three planetary gear trains: PG1 and PG2 are identical and their Willis’ 

ratio is �1 = �2 = −0 . 505 ; PG3 includes two sets of planet gears and its Willis’ ratio is �3 = 0 . 44 . The ICE is connected to

the PG1 ring gear. The PG3 ring gear is the transmission output, which is connected to a final drive for delivering power to

the wheels. In the following, the final drive is ignored because it does not affect the PSU behavior. Also, the PG1 carrier, the

PG2 carrier, and the PG3 sun gear are constrained to rotate together by a common shaft that is a neutral node. Furthermore,

the powertrain involves two electric machines, equal in size, which can act as motors or as generators: Motor O is directly

linked with the PG1 sun gear, Motor I is directly linked with the PG2 sun gear. Lastly, five multi-plate clutches potentially

enable several different modes of operation. The half-stationary clutches C1 and C3 can act as a brake on the PG3 carrier

and the PG2 ring gear, respectively. The fully-rotating clutch C2 can connect the PG2 sun gear (and thus Motor I) to the PG3

carrier, while the fully-rotating clutch C4 can connect the PG1 sun gear (and thus Motor O) to the PG2 ring gear. The clutch

E prevents the ICE from moving and provides the reaction torque on the input shaft during full-electric functioning. 

Clutches could be engaged in 2 5 = 32 different arrangements, of which 16 are potential FEV modes (clutch E engaged)

and the remaining 16 potential power-split hybrid operations [15] . However, not all alternatives are suitable for vehicle 

propulsion with available power on the output shaft. Indeed, the transmission with all the clutches opened has four available

kinematic DOFs, i.e. two for each PG (six in total) minus two DOFs owing to the common shaft. Since each engaged clutch

subtracts a further DOF, two clutches (not more and not less than two) among C1, C2, C3 and C4 must engage to achieve

the power-split hybrid propulsion. However, C1 and C2, or C3 and C4 cannot be engaged at the same time otherwise the

transmission is unable to transmit power to the output. 

As a result, the viable power-split modes are only the four reported in Table 2 . In particular, if clutches C1 and C3 are

engaged, a Shunt input-split mode is achieved, since PG2 and PG3 are kinematically equivalent to an ordinary gear set and

the output speed is proportional to the speed of Motor I. Another input-split mode is realized when C2 and C3 are both

engaged because all the three PG3 branches rotate at proportional speed to the one of Motor I. By engaging the clutches C1

and C4, PG1 and PG2 operate in a Compound split mode, while PG3 acts as an OG. Finally, all the three PGs are active in a

second Compound split mode, where C2 and C4 are engaged. 

If three clutches are engaged, the transmission has only one DOF and the overall speed ratio is fixed. This situation is

useful when a motor is still at its mechanical point. Indeed, by closing a third clutch the reaction torque on the shaft that
11 
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Fig. 5. Functional layout for Cadillac CT6 transmission. 

Fig. 6. Flow chart of the PS-CVTs analysis method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

connects the motor to the PSU can be provided by the frame, rather than by the motor itself, which therefore is unloaded.

This condition determines a fixed-ratio parallel hybrid mode, whereby a motor is switched off while the other electric 

machine can provide additional power for boosting the vehicle propulsion or can recharge the battery, but at a fixed speed

ratio. However, since operating in a fixed-ratio parallel hybrid mode means operating in correspondence of a mechanical 

point of a power-split mode, it does not need to be addressed separately. Table 2 also shows that for each power-split mode

there is a corresponding FEV mode, achieved by engaging the clutch E. 

Fig. 5 summarizes the functional layout of the Cadillac CT6 transmission. With reference to the notation adopted in the 

previous sections, the subscripts in, out, o and i are referred to the PSU ports linked with the engine, PSU output, Motor O,

and Motor I, respectively. The neutral node is indicated by n . 

In the following, the transmission of the Cadillac CT6 is analyzed by the analysis method summarized in the flow chart of

Fig. 6 . Once identified the functional parameters for each power-split mode in Section 0 (procedure enclosed in the red box

of Fig. 6 ), these are used in Section 5.2 to deduce the range of utilization of each mode by analyzing the rotational speed

of the electric machines. Section 5.3 calculates the mechanical power losses and real CVU powers. The complete study of 

kinematics and real power flows shown in the flow chart is carried out also for FEV operation in Section 5.4 . 

Once known the real CVU power flows, the conversion power losses of the electric machines could be easily taken into

account by Eq. (24) , if a constant efficiency for both Motor O and Motor I was supposed. This issue was addressed for the

same transmission by Lee et al. in [15] by using the lever analogy. They assumed constant loss factors in the electric power

conversion but neglected the PSU mechanical power losses. They also supposed that the power generated by one electric 

machine has to be entirely consumed in the other one, but this assumption does not properly address the electric unit of

HEVs. Indeed, for instance, when an electric machine is still at its mechanical point, the second electric machine can aid the

ICE by providing power or charge the battery by absorbing power. In our approach, this occurrence can be modeled by the

η parameter. 
12 
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Table 3 

Nodal ratios and corresponding speed ratios for o, i and n for each power-split mode. 

Mode τ# o τ# i τ# n τo # i τo # n τi # o τi # n τn # o τn # i 

SHUNT 1 0.29 0 0 −2.0 −2.0 2.0 0 0.66 0 

COMPOUND 1 0.29 0.59 0 2.0 −2.0 2.0 3.9 0.66 1.3 

COMPOUND 2 1.4 0.59 2.2 2.0 −2.0 2.0 3.9 0.66 1.3 

SHUNT 2 1.4 0 0 −2.0 −2.0 2.0 0 0.66 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In any case, calculating the electrical power losses by assuming a constant efficiency of the electric machines would 

be fairly approximate, since, in effect, it depends greatly on the working conditions. A more accurate assessment could be 

performed by the approach outlined in Section 2.4 . However, because the main purpose of this study is to test the novel

approach for the identification of the functional parameters, which can be largely fulfilled even without the assessment of 

the power losses in the electric machines, we omit it for brevity. 

5.1. Calculation of the functional parameters 

In this section, the functional parameters are derived by applying the new method explained in Section 4 . 

The first step is to determine the constraints matrix from the constructive arrangement of the PSU. As it is addressed in

Section 4 , the constraints matrix [ K ] has as many rows as the number of constraints. Ignoring the simple isokinetic joints,

which would cause redundant equations, the constructive constraints are related to the three PGs and the clutches system. 

In particular, the action of the clutch E is not taken into account throughout this evaluation because it only affects the full

electric modes. Also, since the activation of C3 and C4 is mutually exclusive, they impose a single constraint on the shaft

linked to the PG2 ring gear, which can be indicated by a fictitious fixed-ratio gear k R 2 ( Fig. 5 ) that switches from 1 to ∞
depending on the engaged clutch. The clutches C1 and C2, likewise, constrain the PG3 carrier acting like a fictitious fixed-

ratio gear k C3 . Hence, there are 3 + 2 constraints: the [ K ] matrix dimension is 5 × 7 (i.e. N C x (N C + 2) ), while the rotational

speed vector { ω} contains 7 elements (N C + 2) . 

The rotational speed vector chosen to properly assemble [ K ] is: 

{ ω } = 

[
ω out ω in ω o ω i ω n ω R 2 ω C3 

]′ 

The general constraint matrix related to the power-split modes is: 

[ K ] = 

⎡ 

⎢ ⎢ ⎣ 

0 −1 �1 0 1 − �1 0 0 

0 0 0 �2 1 − �2 −1 0 

−1 0 0 0 �3 0 1 − �3 

0 0 −1 0 0 k R 2 0 

0 0 0 −1 0 0 k c3 

⎤ 

⎥ ⎥ ⎦ 

where k R 2 = ω o / ω R 2 and k C3 = ω i / ω C3 . According to Table 2 and Fig. 5 , k R 2 is equal to 1 when the clutch C4 is engaged (in

Compound 1 and Compound 2 operating modes) or to ∞ when the clutch C3 is engaged (in Shunt 1 and Shunt 2). Similarly,

k C3 is equal to 1 when the clutch C2 is active (in Compound 2 and Shunt 2) or to ∞ when the clutch C1 is active (in Shunt

1 and Compound 1). 

After determining [ K ], we implemented the model in MATLAB and calculated the matrix [ W ] using Eq. (39) . Exploiting

some for-loops speeds up the replication of the same calculations for every mode. This makes the model highly automatable. 

In the numerical computing environment, we replaced ∞ with a value high enough (e.g., 10 5 ). Since there are three TPMs,

only the first, second and third row of [ W ] are necessary to evaluate the nodal ratios and the corresponding speed ratios of

the shafts o, i and n by Eqs. (44) and (45) . The results are reported in Table 3 . 

5.2. Kinematic analysis and mode shift 

The mechanical points and the corresponding speed ratios characterize the CVU kinematic. The rotational speed of Motor 

O ( τo ) and Motor I ( τi ) are reported in Fig. 7 as a function of the overall transmission speed ratio τ . 

It is noteworthy that each power-split mode could be ideally exploited for any overall transmission ratio τ , except that 

constructive constraints limit the maximum speed achievable by the electric machines. For this reason, there is the need 

to arrange multimode transmissions, which modify the PSU internal connections and thus the functional parameters, as 

well ( Table 3 ). Different functional parameters involve different speed ratios ( Fig. 7 ). However, it is advisable to perform the

shift between two sequential modes to prevent clutches from slipping. It is possible to realize a synchronous switch if the

relative speeds of the involved shafts are null, i.e. in correspondence of the mechanical points, where one electric machine 

is motionless. Therefore, from Table 3 it is clear that the shift between Shunt 1 and Compound 1 must be performed in the

common mechanical point τ# o = 0 . 29 , the shift between Compound 1 and Compound 2 must be performed in τ# i = 0 . 59

and the shift between Compound 2 and Shunt 2 must be performed in τ = 1 . 4 ( Fig. 7 ). 
# o 

13 
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Fig. 7. Rotational speeds of Motor O ( τo ) and Motor I ( τi ). 

Table 4 

Overall transmission ratio τ∗ corresponding to the synchronism of 

each PG. 

SHUNT 1 COMPOUND 1 COMPOUND 2 SHUNT 2 

PG1 0.44 0.44 1.0 2.1 

PG2 – 0.44 1.0 –

PG3 – – 1.0 –

 

 

 

 

 

 

 

 

Moreover, as stated before, the mechanical points can be exploited as fixed-ratio parallel hybrid modes. Thus, at τ# i = 

0 . 59 both the clutches C1 and C2, as well as C4, must engage to unload the Motor I. Instead, at τ# o = 0 . 29 and τ# o = 1 . 4

both the clutches C3 and C4, as well as C1 or C2 respectively, must engage to unload the Motor O. 

To conclude the kinematic analysis of the transmission, we calculated the overall speed ratio for which every PG reaches 

its synchronism in each power-split mode ( Eq. (15) ). The results are reported in Table 4 . Obviously, the PGs operating like

OGs throughout a certain power-split mode, do not reach the synchronous condition within that mode. Eventually, all the 

active PGs reach the synchronism at the same τ∗ in Compound split modes because of the lack of OGs on the shaft con-

necting them. 

5.3. Mechanical power losses 

According to Section 2.3 , the overall mechanical power losses result from the sum of the mechanical losses occurring in

each PG. Any losses in the clutches are neglected. Thus, the total power losses are: 

p̄ L = p̄ L | PG 1 + p̄ L | PG 2 + p̄ L | PG 3 

which are calculated by Eq. (18) , after labeling each branch of the TPMs as reported in Table 5 . In this respect, it is worth

noting that any reference notation can be applied, since the PGs mechanical power losses computed by Eq. (18) prescind

from it, depending only on the relative motion between PG shafts and torques. 

Therefore: 

p̄ L | PG 1 = −
∣∣∣∣(1 − ηC 

)(φn 
in/o 

− ψ 

C 
R/S 

1 − ψ 

C 
R/S 

)
p in 

∣∣∣∣

p̄ L | PG 2 = −
∣∣∣∣(1 − ηR 

)(φo 
n/i 

− ψ 

R 
C/S 

1 − ψ 

R 
C/S 

)
p n 

∣∣∣∣

p̄ L | PG 3 = −
∣∣∣∣(1 − ηC 

)(φi 
out/n − ψ 

C 
R/S 

1 − ψ 

C 
R/S 

)
p out 

∣∣∣∣
We chose the most convenient branch x for each PG. Indeed, p in = p̄ in = 1 and p out = p̄ out = −η by definition. Fur-

thermore, the real power transmitted by PG1 ring gear equals p and the real power transmitted by PG3 ring gear equals
in 
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Fig. 8. Mechanical power losses occurring in power-split operation (as a fraction of the input power). 

Fig. 9. Real power flowing through the Motor O (as a fraction of the input power). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p out , owing to the lack of OGs on the involved shafts. On the other hand, the power transmitted by the PG2 carrier can be

calculated only in ideal conditions, by the principle of power conservation in the neutral node n and Eq. (16) : 

p n | PG 2 = − p n | PG 1 − p n | PG 3 = p in · φo 
in/n + p out · φi 

out/n 

Table 6 summarizes the fixed- Z apparent efficiencies ηZ and the fixed- Z speed ratios ψ 

Z 
X/Y for each PG, based on the

functional and constructive layout of the transmission. The basic efficiency is supposed to be slightly lower for PG3 because 

it has one more gear meshing between the two sets of planet gears. 

The involved characteristic functions are obtained by Eq. (11) using the proper nodal ratios from Table 3 , as well as

τ# in = 10 5 and τ# out = 0 . At this point, the calculation of the power losses is straightforward and leads to the power losses

map of Fig. 8 , handled as a function of the overall transmission ratio τ and the overall apparent efficiency η. They are

intended as a fraction of the input power and the contour spacing is 0.005. In both the compound-split modes, the power

losses are minimum for τ = 0.44 and τ = 1, which correspond to synchronous conditions (see Section 5.2 ). Nonetheless,

at τ = 1 the mechanical power losses are null, because all the three PGs operate at synchronism while at τ = 0.44 the

mechanical power losses are minimum but not null since only PG1 and PG2 are synchronous, while PG3 operates as an OG.

Once computed the power losses, the real power flowing in the electric machines is obtained by Eqs. (23) and shown

in Fig. 9 (Motor O) and Fig. 10 (Motor I). The contour spacing is 0.1. Even though the power losses do not show any dis-

continuities, their gradient does, owing to a torque or speed reversal in the PSU. In other words, such discontinuities are

due to an inversion of power flows occurred in PGs and thus of their basic efficiency η0 . However, it is worth noting that

the addressed approximated method maintains its physical consistence without requiring to predict a priori the power flow 

direction. The gradient discontinuity is reflected in CVU real power flows at the synchronism (see Table 4 ) or the mode shift.

The same trend would be noticed in real torques developed by the electric motors, which can be computed by dividing p̄ o 
by τo and p̄ i by τi . 
15 
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Fig. 10. Real power flowing through the Motor I (as a fraction of the input power). 

Table 5 

Reference notation of the TPMs shafts for the calcula- 

tion of power losses in power-split modes. 

x X y Y z Z 

PG1 in ring o sun n carrier 

PG2 n carrier i sun o ring 

PG3 out ring n sun i carrier 

Table 6 

Fixed- Z apparent efficiencies and fixed- Z speed ratios as 

functions of the basic efficiency η0 and the Willis’ ratio 

� . 

� η0 ψ 

Z 
X/Y ηZ = ψ 

Z 
X/Y / ̄ψ 

Z 
X/Y 

PG1 −0.505 0.97 � η0 

PG2 −0.505 0.97 �
�−1 

�/(�−1) 
�/η0 /(�/η0 −1) 

PG3 0.44 0.96 � η0 

Table 7 

Speed ratios in FEV modes. 

Mode ω o / ω out 

ω i / ω out 

ω o / ω i 

FEV 1 6.8 6.8 1.0 

FEV 2 6.8 −6.6 −1.0 

FEV 3 −2.5 2.4 −1.0 

FEV 4 1.4 1.4 1.0 

 

 

 

 

 

 

 

 

 

 

 

5.4. Full electric operation 

According to Section 3 , the same functional parameters of each power-split mode can be used to evaluate the transmis-

sion behavior in the respective FEV operation. Hence, this section analyzes the four FEV modes indicated in Table 2 , by using

the nodal ratios and the corresponding speed ratios of Table 3 . 

The ratios between the speed of electric machines and transmission output are computed by Eqs. (25) and shown in

Table 7 . They are constant, thus imposing ω out implies univocal rotational speeds for both Motor O and Motor I. Furthermore,

FEV 1 and FEV 2 achieve the highest speed ratios available among the FEV modes, which are very similar to the speed ratio

between the Motor I and the output shaft realized for the fixed-ratio operation at the mechanical point τ = τ# o = 0 . 29 .

Therefore, both FEV 1 and FEV 2 might be used for providing acceleration at low vehicle speed, because of constructive

constraints on the maximum speed achievable by the electric machines. The choice to exploit FEV 1 rather than FEV 2 or

vice versa may be due to the mechanical power losses occurring in the PSU devices. On the other hand, the speed ratios

of FEV 3 and FEV 4 are lower, therefore they can be used at higher vehicle speeds. Nonetheless, the speed ratio of FEV 4

is the same speed ratio between the Motor I and the output shaft realized at the mechanical point τ = τ = 1 . 4 in hybrid
# o 
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Table 8 

Reference notation of the TPMs shafts for the calcula- 

tion of power losses in FEV modes. 

x X y Y z Z 

PG1 o sun in ring n carrier 

PG2 n carrier i sun o ring 

PG3 out ring n sun i carrier 

Fig. 11. Mechanical power losses occurring in FEV modes (as a fraction of the output power). 

 

 

 

 

 

 

 

 

 

 

operation. Since this fixed-ratio functioning point is exploited for overdrive, FEV 4 might not be suitable for pure electric 

propulsion because the vehicle usually achieves a lower maximum speed, and then the electric motors might be forced to 

operate at an inconveniently low speed. Moreover, Motor O and Motor I rotate at a very similar speed in all FEV modes

(except for the direction of rotation in FEV 2 and FEV 3). 

The mechanical power losses in FEV modes are assessed by the same equations used in Section 5.3 computed for τ =
τ# in = 10 5 and normalized to the opposite of the output power. Moreover, we need to change the reference notation for PG1

( Table 8 ) to avoid the use of p in (see Section 3 ). 

The equations used for calculating power losses are: 

p̄ ′ L | PG 1 = −
∣∣∣∣(1 − ηC 

)(φn 
o/in 

− ψ 

C 
S/R 

1 − ψ 

C 
S/R 

)
p ′ o 

∣∣∣∣

p̄ ′ L | PG 2 = −
∣∣∣∣(1 − ηR 

)(φo 
n/i 

− ψ 

R 
C/S 

1 − ψ 

R 
C/S 

)
p ′ n 

∣∣∣∣

p̄ ′ L | PG 3 = −
∣∣∣∣(1 − ηC 

)(φi 
out/n − ψ 

C 
R/S 

1 − ψ 

C 
R/S 

)
p ′ out 

∣∣∣∣
where p ′ out = p̄ ′ out = −1 , while p ′ o | PG 1 and p ′ n | PG 2 must be assessed by combining Eq. (16) with the principle of power conser-

vation: 

p ′ o | PG 1 = p ′ o − p ′ o | PG 2 = p ′ o + φn 
i/o 

· p ′ 
i 
| PG 2 = p ′ o + φn 

i/o 
· ( p ′ i − p ′ i | PG 3 ) == p ′ o + φn 

i/o 
· ( p ′ i + φn 

out/i 
· p ′ out ) p 

′ 
n | PG 2 = − p ′ n | PG 1 −

p ′ n | PG 3 = p ′ o | PG 1 · φin 
o/n + p ′ out · φi 

out/n 

Fig. 11 shows the power losses as a function of p ′ 
i 
= −P i / P out = p̄ ′ 

i 
, Fig. 12 shows the power flowing in Motor O and in

Motor I in real condition, where p̄ ′ o = 1 − p̄ ′ L − p̄ ′ 
i 
. Fig. 11 suggests that FEV 1 should be preferred to FEV 2 for lower vehicle

speeds because of the lower power losses. Furthermore, the power losses occurring in FEV 1 are constant, therefore the PSU

mechanical efficiency is not affected by the power rates provided by each motor. FEV 4 is the most efficient mode, thus,

where possible, it should be preferred to FEV 3, which, on the contrary, is the least efficient. However, as stated before, FEV

4 might be unsuitable for pure electric propulsion, thus the exploitation of FEV 3 for the highest vehicle speeds may be

unavoidable. 
17 



M. Cammalleri and A. Castellano Mechanism and Machine Theory 162 (2021) 104350 

Fig. 12. Real power flowing in the electric motors in FEV modes (as a fraction of the output power). 

 

 

 

 

 

 

 

 

6. Conclusions 

The wide variety of viable power-split transmissions requires seeking a proper mathematical model that can address PS- 

CVTs both in analysis and in the design phase. In this respect, the unified parametric model used in this paper emerges as

a highly functional tool, particularly for modeling electric PS-CVTs. However, its use requires knowledge of the functional 

parameters on which it is based. 

Specifically, the study presented in this paper proposes a new method for identifying the basic functional parameters of 

the model when the constructive parameters of the transmission are known, i.e. in an analysis stage. The new formulation 

is based on a matrix approach that befits any power-split transmission, regardless of the number of planetary gear sets 

and their constructive arrangement in the power-split unit, as well as of ordinary gearing or clutches. Indeed, it enables an

effortless identification of the functional parameters even for multimode PS-CVTs, since it is easily automatable in proper 

numerical software (e.g., MATLAB). Indeed, a complete working description of any transmission can be achieved by only 

changing the constraint matrix [ K ] in input. 

Moreover, a rearrangement of the previous analysis model allowed us to assess the mechanical power losses occurring 

in the power-split unit and the consequent real power flowing into the electric machines, not only during hybrid-electric 

propulsion but also in pure electric operation. 

Lastly, the application of this model to the complex multimode PS-CVT of the Cadillac CT6 resulted in a comprehensive

analysis of the kinematics, mechanical power losses and power flows when functioning in each of the eleven available 

functioning modes. 

The advancement presented in this work made the addressed parametric model a highly versatile analysis tool, applicable 

to all power-split transmissions with any number of planetary gearing and operating modes. Nonetheless, it is worth noting 

that although assembling [ K ] is relatively trivial for a known PSU, designing a new one starting from scratch and generating

a reasonable constraints matrix is a rather tricky task, which has been the subject of extensive literature. In this respect,

the graph theory [29-35] is widely used to explore the possible solutions; yet, identifying the most suitable layouts among 

the feasible ones is not immediate because there is no way to detect the best solution without simulating them all, and

this requires using complex optimization algorithms and time-consuming calculations. On the contrary, the approach by 

functional parameters presented in [36] makes the preliminary design of a new PS-CVT quite simple and fast. However, the 

design procedure presented in [36] befits only single-mode PS-CVTs with up to two planetary gear sets. Therefore, a further 

enhancement of the model is under preparation, to provide a universal and intelligible tool to design multi-mode PS-CVTs 

with more than two PGs. 
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