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a b s t r a c t 

This paper addresses the mechanical losses of planetary transmissions, with particular at- 

tention to power-split CVTs in their hybrid electric versions. It provides unified layout- 

independent analytical relationships, which can be used for both analysis, design and con- 

trol purposes, and a simplified approach; the latter overcomes the necessity to segment 

the operating range of the power-split CVT in order to keep its loss model physically con- 

sistent. An example of application to a real hybrid electric PS-CVT is performed to show 

the simplicity, accuracy and generality of the proposed method. 
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1. Introduction 

Step-less transmissions allow optimal operation of the prime engine, thus continuing to be one of the most promising

solution for both the automotive and the motorcycling field [1–10] . Yet, the performance of the variator drive itself, whatever

its type, can be improved considerably by means of the so-called power-split continuously variable transmission (PS-CVT),

i.e. with the aid of a planetary gear system. PS-CVT has become almost a standard for earthmoving hydraulic machinery and

drive the market of modern hybrid electric vehicles, for which the shafts of two reversible electric machines represent the

variator drive [11–15] . 

More generally, in a PS-CVT ( Fig. 1 ) we can discern between the continuously variable unit (CVU), i.e. a variator drive of

any kind, and the power-split unit (PSU), i.e. a planetary gear system, possibly including both ordinary and planetary gear

sets. By mean of the PSU, the size of the CVU can be reduced, the overall variable speed ratio range can be extended, and

a better efficiency can be obtained in respect of using the same type of CVU, but working in series with the prime engine.

The overall efficiency improvement can be significant when the efficiency of the CVU itself is low, since the gear sets in the

PSU have a very high basic efficiency. Accordingly, the losses in the PSU are negligible for its preliminary design, if the latter

is performed properly [16] . 

Nonetheless, assessing even small mechanical losses of the PSU can be important, because it allow the engineer to dis-

criminate furtherly among the several functionally equivalent constructive solutions. In addition, it is essential for control

purposes, as it permits to obtain the desired output power with the best overall efficiency. Determining power losses in

planetary transmissions has attracted considerable interest in literature, mostly because power losses of a planetary gearing

(PG), despite the high meshing efficiency between the involved gears, can be surprisingly high under specific circumstances.

Indeed, it is well known that the meshing losses of a PG can be much worse than those of an ordinary gearing (OG) be-
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Nomenclature 

Acronyms 

CVU continuously variable unit 

OG ordinary gearing 

PG planetary gearing 

PS-CVT power-split continuously variable transmission 

PSU power-split unit 

TPM three-port mechanism 

Subscripts 

C, R, S carrier, ring and sun of a PG 

in, out, i, o external shafts of the PSU 

X, Y, Z external shafts of a PG 

x, y, z external shafts of a TPM 

j j th shaft 

Symbols 

Over-lined power or torque symbols refer to real working conditions of the PSU 

P j ideal power transmitted by the j th shaft 

p j dimensionless ideal power transmitted by the j th shaft 

P j | n ideal power transmitted by the j th shaft of the n th TPM 

P̄ loss power loss 

p̄ L dimensionless power loss in the PSU 

T j ideal torque applied to the j th shaft 

η overall apparent efficiency 

ηv CVU apparent efficiency 

η0 basic efficiency of a PG 

ηZ 
Y/X 

fixed-Z apparent efficiency of a PG 

ηz 
y/x fixed-z apparent efficiency of a TPM 

ηX / x apparent efficiency of an OG linking the shaft x of the TPM to the shaft X of the PG 

ˆ η unit vector of the overall apparent efficiency 

� dimensionless ideal output torque 

θ j dimensionless ideal torque applied to the j th shaft 

τ overall speed ratio 

τ j speed ratio of the j th shaft 

τ# j overall speed ratio when the j th shaft is still 

τi # o τi when the shaft “o” is still 

τo # i τo when the shaft “i” is still 

τ ∗ overall speed ratio concurrent with the synchronism of a PG 

ˆ τ unit vector of the overall speed ratio 

φz 
x/y generalized characteristic function of a TPM 

� reference Willis’ ratio 

ψ constructive Willis’ ratio 

ψ 

Z 
Y/X 

fixed-Z speed ratio of a PG 

ω j angular speed of the j th shaft 

cause the relative velocity between engaging teeth can be very high. Numerous methods claim to address any planetary

transmission [17–23] , nonetheless quantifying such losses remains a laborious task, especially when analyzing or designing

compound PS-CVTs. Indeed, the use of convoluted and/or case-specific formularies can make their application very difficult.

As a result, the study of PS-CVTs has been performed frequently neglecting the mechanical losses in the PSU [24–28] and in

the CVU as well [29–32] . For instance, in [26] the problem of power recirculation, which is another way to explain the high

losses of PGs, is addressed neglecting losses themselves. In [20] there is a remarkable attempt to provide a general approach

to the problem of the PGs losses introducing the concept of reticulator and the responsivity theorem, yet, despite the formal

analytical elegance of the solution, its application is not immediate. In [22] a systematic approach, based on the method

proposed by [17] is described. Basically, it requires to identify the input and driven shafts, and then to calculate the overall

efficiency of the PG depending on one experimental efficiency parameter and constructive ratio. Such parameter is then

used to calculate the real power ratio between two shaft of the PG, and, definitively, to assess the power flow distribution.

The same method is modified and elaborated furtherly in [23] , splitting each simple planetary gear train in two basic ones

and providing the relationships between powers as linear functions, but it remains conceptually the same. Unfortunately, it
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Fig. 1. General scheme of the PS-CVT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

introduces different cases depending on the internal power flows and constructive ratio of the PGs, which is not strictly nec-

essary. Further remarks on the previous method can be found in [33,34] . In [35–38] the efficiency of simple shunt PS-CVTs

in different configurations is analyzed, and several sources of discontinuities in the mechanical parameters are identified.

In particular, [39] represents a specific work regarding the stall speed condition. [40] represents a recent theoretical and

experimental study regarding the efficiency of a simple PG working in different conditions. In [41] a method analogous to

[19] is proposed and applied to specific discrete planetary transmissions. In [42] several constructive solution are evaluated

in terms of efficiency and reachable speed ratios. A brief, but very exhaustive review of some of the most influent meshing

losses calculation methods is given [43] . Eventually, methods able to take into account also gears’ elasticity [44] or churning,

windage and bearing losses have been proposed in [45,46] . Experimental results about the spin losses have been given in

[47] . 

Unfortunately, in most of the previous papers the research of a rigorous systematic approach has led to mathematical for-

malism, which makes the physical meaning of the intermediate results barely intelligible, and then the method themselves

prone to errors. Others authors draw up encyclopedic formularies, which are hardly useful to the designer, particularly when

the layout of the transmission is not definitive yet. Indeed, each shaft of a planetary gear set can be subject to torque and

speed reversals, which may cause discontinuities in the mechanical loss factors of the linked devices. A rigorous study of

the mechanical losses would require identifying and studying the conditions responsible for such discontinuities, making

such task very tiresome, especially at earliest stage of the design process. 

To overcome this problem, we suggest an approximated approach, which consents obtaining reliable results while ignor-

ing such discontinuities, it being based on the physical coherence of the model. Indeed, we think that it is more fruitful for

a designer being able to implement a general but simple method, which offers verisimilar results readily. In particular, our

method is intended to address the mechanical losses of hybrid electric PS-CVTs, in which the shafts of the CVU represent

a couple of reversible electric machines, but it can be easily applied also to hydraulic or mechanical CVUs, as well as to

discrete planetary transmissions with any number of epicyclic gear trains. 

2. Preliminary calculation of the power flows 

In this section, we address the preliminary calculation of the power flows, both external ( Section 2.1 ) and internal

( Section 2.2 ) to the PSU. Indeed, as a general rule, this is necessary in order to keep the model physically consistent. 

For this purpose, many authors count on the ideal power flow distribution, which is a reliable choice when the CVU

apparent efficiency ηv = −P o / P i is close to unity. However, when ηv is distant from unity the torque distribution is largely

different, and several power flows change sign for transmission ratios very far from those predicted by the ideal model.

Such condition can lead to inaccurate results, e.g. when the CVU is responsible for significant power losses, or if an energy

accumulator is used to assist the prime engine or perform regenerative braking. Indeed, in these circumstances ηv can take

values lower than zero or bigger than one, since its value is not strictly due to power losses. In general, throughout the

paper, we define all the efficiencies as “apparent”, because we keep unaltered their definition of power ratio between two

shafts of the PS-CVT and no matter the underlying causes or the power flow directions. For these reasons, all the apparent

efficiencies don’t have to be comprised between 0 and 1. 

However, in these circumstances, if we assume that only the losses in the planetary transmission are negligible at first,

it is still possible to perform the preliminary calculation of the internal power flows and of the efficiency of the PS-CVT by

mean of few general equations, using the method described in detail in [16,48] . Accordingly, we strongly recommend the

use of the aforementioned method, since it does not imply any increase in computational complexity and it depends only

on few functional parameters, as it will be clear in the next section. 

2.1. Powers transmitted by the shafts external to the PSU 

The mechanical points τ# i and τ# o , i.e. the overall speed ratios when either the “i ” or the “o ” shaft of the CVU is blocked

(see Fig. 1 ), permit calculating the relative power flows and torques on the main shafts of an ideal PSU directly by mean

of the following relationships (1) –(3) . Such relationships have been published in [48] as functions of the CVU apparent

efficiency ηv = −P o / P , while here they are expressed as functions of the overall apparent efficiency η instead, primarily
i 
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Fig. 2. Example of PSU with the four main shafts linked to two TPMs (left and right) and isokinetic joints (up and down). Squares and rhombi represent 

respectively planetary and ordinary gear sets. The capital letters refer to the shafts of the PGs, the lowercases to those of the TPMs. The arrows indicate 

the positive sign for the power flows, i.e. always entering their reference subsystem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

because this is the most appropriate logic when controlling electric PS-CVTs. 

τ = 

ω out 

ω in 

; � = 

T out 

T in 
; P out 

P in 
= − η (1)

τi = 

ω i 

ω in 

= τi # o ·
τ − τ# i 

τ# o − τ# i 

; θi = 

T i 
T in 

= − ( 1 + � τ# o ) 

τi # o 

; p i = 

P i 
P in 

= 

( τ − τ# i ) ( 1 + � τ# o ) 

τ# i − τ# o 

(2)

τo = 

ω o 

ω in 

= τo # i ·
τ − τ# o 

τ# i − τ# o 

; θo = 

T o 

T in 
= − ( 1 + � τ# i ) 

τo # i 

; p o = 

P o 

P in 
= 

( τ − τ# o ) ( 1 + � τ# i ) 

τ# o − τ# i 

(3)

Each power is positive if entering the subsystem to which it refers, and the powers P i and P o can refer to either the CVU

or the PSU ( Fig. 1 ). Since the main object of this study is the PSU, hereinafter we assign them to the latter, but it is worth

noting that, in order to change reference, it is enough to modify their sign in Eq. (2) and (3) . For analogous reasons, we

label as ideal the power flow distribution when we neglect the losses in the PSU, regardless what happens within the CVU.

Eventually, we continue to refer to [48] for the kinematic relationships between the main shafts, i.e. τ i , τ o and τ . 

2.2. Powers transmitted by the shafts internal to the PSU: generalized characteristic function 

The mechanical points govern also a set of characteristic functions [16,48] , which represent the ideal ratios between the

powers transmitted by two shafts of a three-port mechanism (TPM), i.e. a simple planetary gear train with up to three

fixed-ratio (see Fig. 2 ). In [16] we recommend their use for design purposes too, since they represent also the link between

the synchronous conditions of the PGs and their respective Willis’ ratios. 

In [16] we have listed explicitly the basic characteristic functions for the design of PS-CVTs with up to two active plan-

etary gear trains. However, in the current model it is neither necessary nor convenient to use a reference function, or to

specify the internal layout of the PSU. Accordingly, we recommend to do not list them explicitly and we provide a general

expression instead: 

φz 
x/y = −P y 

P x 
= 

τy 

τx 
· τx 

τy 

∣∣
τz =0 

= 

τ − τ# y 

τ − τ# x 

· τ# z − τ# x 

τ# z − τ# y 

(4)

In addition, a PSU involve two or more isokinetic joints, i.e. shafts belonging to different devices forced to spin with the

same angular speed. For these joints is always valid the principle of conservation of power: 

P x 
∣∣

1 
+ P x 

∣∣
2 

+ ... = 0 (5)

As a result, two Eq. (4) for each TPM and one Eq. (5) for each isokinetic joint, together with Eq. (1) –(3) , are sufficient in

order to assess the ideal internal power flow distribution, for given input and output power, as described in the example of

Section 7 and in [16,48] . 

As it can be easily verified, Eq. (4) can be deduced from the kinematic relations provided in Section 2.1 , and it is possible

to obtain whichever among the characteristic functions already listed in [16,48] by mean of simple substitutions, considering

that τ# out = 0 and τ# in = ∞ . Eventually, it is worth noting that this approach can be easily applied to the analysis of trans-

missions that involve more than two planetary gear trains (the number of possible characteristic functions raises factorially

with the number of TPMs), such as complex multimode PS-CVTs or discrete automatic transmissions, provided that their

mechanical points are known, or otherwise calculated as in [48] . 
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3. Mechanical losses in the three-port mechanisms 

As stated before, a TPM can be made of one planetary gear train and up to three ordinary gear sets (see Fig. 2 ). 

In order to predict the mechanical losses of a TPM, we need to analyze the behavior of these devices separately and we

refer to the shafts of the PG with the capital letters and to those of the TPM with the lowercase (see Fig. 2 ). 

3.1. Losses in the planetary gear trains 

In ideal conditions, for a planetary gear train the following equality is valid: 

P X + P Y + P Z = 0 (6) 

However, in real conditions, it is: 

P̄ X + P̄ Y + P̄ Z + P̄ loss = 0 (7) 

If we continue to assume the powers as positive if entering their reference mechanism, it must be P̄ loss ≤ 0 . If ηZ 
Y/X 

is the

fixed-Z apparent efficiency, defined as follows: 

ηZ 
Y/X = − P̄ Y 

P̄ X 

∣∣
ω Z =0 

= 

T̄ Y 

T̄ X 
· T X 

T Y 
= 

(
P̄ Y 

P̄ X 

)
/ 

(
P Y 
P X 

)
(8) 

accordingly, the real torque ratios are: 

T̄ Y 

T̄ X 
= −

ηZ 
Y/X 

ψ 

Z 
Y/X 

(9) 

T̄ Z 

T̄ X 
= 

ηZ 
Y/X − ψ 

Z 
Y/X 

ψ 

Z 
Y/X 

(10) 

in which ψ 

Z 
Y/X 

is: 

ψ 

Z 
Y/X = 

ω Y − ω Z 

ω X − ω Z 

(11) 

Substituting the previous Eqs. (9)-(11) in (7) , after some math, we obtain: 

P̄ loss 

∣∣
PG 

= −
(
1 − ηZ 

Y/X 

)
( ω X − ω Z ) T̄ X (12) 

Since P̄ loss ≤ 0 , according to Eq. (12) , ηZ 
Y/X 

switches from lower to bigger than unity values, or vice versa, when: 

- the planetary gear train reaches its synchronism. 

- the torques transmitted by the shafts of the PG change sign. 

Eventually, we can rewrite the latter in terms of characteristic functions, which are independent from the fixed gear

joints (see Eq. (4) or [16,48] ), and then equal for the PG and TPM, i.e. referable to the kinematic of the external shafts: 

P̄ loss 

∣∣
PG 

= −
(
1 − ηZ 

Y/X 

)(φz 
x/y − ψ 

z 
x/y 

1 − ψ 

z 
x/y 

)
P̄ X (13) 

in which ψ 

z 
x/y = φz 

x/y | τ∗ , and τ ∗ is the overall speed ratio for which the PG is synchronous [16] . 

Accordingly, we must assume that: 

ηZ 
Y/X < 1 

(
φz 

x/y −ψ 

z 
x/y 

1 −ψ 

z 
x/y 

)
P̄ X > 0 

i f 

ηZ 
Y/X > 1 

(
φz 

x/y −ψ 

z 
x/y 

1 −ψ 

z 
x/y 

)
P̄ X < 0 

(14) 

Usually, for a planetary gear train it is known the fixed-carrier efficiency, also known as basic efficiency, i.e. η0 = ηC 
R/S 

,

where R, C and S represent the ring, carrier and sun gear of the PG. Considering that the torques applied to a PG are speed

independent, the fixed-ring and fixed-sun efficiencies can be calculated by mean of the relationships of Table 1 , in which

ψ = ψ 

C 
R/S 

is the Willis’ ratio. 

Assessing the real power ratios between the shafts of a PG requires calculating a pair of apparent efficiencies ηZ 
Y/X 

and ηY 
Z/X (or ηX 

Y/Z ) by mean of Table 1 , replacing X,Y,Z, with R,C,S , in the correct order, both for η0 < 1 and for its reciprocal.

The correct pair is selected accordingly to the previous test (14) , which can be performed for only one of them, as they

are mutually dependent and switch together. Eventually, when possible, it is better for P̄ X in Eq. (14) to be one of the two

known main power flows of the PSU, such as P̄ or P̄ out , because they are supposed to do not change from the preliminary
in 
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Table 1 

Relationships between fixed-shaft apparent efficiencies of 

a PG. 

ηC 
R/S ηC 

S/R ηR 
S/C ηR 

C/S ηS 
C/R ηS 

R/C 

η0 
1 
η0 

1 −ψ 
η0 −ψ 

η0 −ψ 
1 −ψ 

η0 −ψ 
η0 ( 1 −ψ ) 

η0 ( 1 −ψ ) 
η0 −ψ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

calculation. Indeed, for given input and output power, the PSU’s mechanical losses will be compensated by the CVU, whose

relative power flows will be different from those calculated by Eqs. (2) and (3) . If the test cannot be performed with a

known real power flow, the ideal one has to be used, but this could lead to mistakes within small ratio ranges in proximity

of power flow inversions. Accordingly, in this case an iterative calculation may be necessary in order to obtain rigorous

results. 

3.2. Losses in the ordinary gears 

For an ordinary gear (or wrapping pair), we can write: 

ηX/x = 

P̄ X 

P̄ x 
(15)

Accordingly, losses in ordinary gear sets are simply: 

P̄ loss 

∣∣
OG 

= −
(
1 − ηX/x 

)
P̄ x (16)

in which ηX / x is the apparent efficiency of the ordinary gearing linking the shafts x , external to TPM, to the shaft X of the

PG, and P̄ x is the power flowing in the x th shaft, positive if entering (see Fig. 2 ). Such losses have to be always negative as

well, so when P̄ x changes sign, so does ( 1 − ηX/x ) : 

ηX/x < 1 P̄ x > 0 

if 

ηX/x > 1 P̄ x < 0 

(17)

If the ordinary gearing itself is obtained using a PG with a fixed shaft Z, then it is possible calculating ηX/x = ηZ 
X/x 

by

mean of the Table 1 , replacing x, X, Z with R, C, S in the correct order. 

4. Calculation of the real power flows 

It is possible to follow the same procedure described in Section 2 in order to assess the real power flow distribution. As

soon as the previous efficiency parameters have been calculated for each ordinary and planetary gear train, it is possible to

correct the power ratios between the shafts of each TPM. Indeed, accordingly to Eqs. (4) , (8) and (15) , it is: 

P̄ y 

P̄ x 
= ηz 

y/x 

P y 

P x 
= −

(
ηZ 

Y/X ·
ηX/x 

ηY/y 

)
φz 

x/y (18)

Which is formally analogous to Eq. (4) . Similarly, each isokinetic joint still provides the same power balance: 

P̄ x 
∣∣

1 
+ P̄ x 

∣∣
2 

+ ... = 0 (19)

Two Eq. (18) for each TPM and one Eq. (19) for each isokinetic joint, for given input and output power, are sufficient in

order to assess the internal power flow distribution, including the real powers flowing through the shafts of the CVU. 

5. Simplified approach 

In this section, we describe an alternative simplified approach based on the results of Section 3 , which eases the PSU’s

power loss calculation, makes superfluous performing the tests described in Section 3 itself, and permits calculating the real

CVU’s power flows directly and by mean of general scheme-independent expressions, as described in Section 5.3 . Indeed,

the method described in Sections 3 and 4 eventually leads to the exact result. Nevertheless, the process is often long and

tiresome, especially in presence of multiple functioning modes, each one with its own synchronous conditions and power

flow distribution. 

In order to simulate passive devices (i.e. P̄ loss ≤ 0) , ηz 
y/x is going to switch from lower to bigger than unity values, or vice

versa, accordingly to the sign of speeds and applied torques (see Eqs. (14) and (17) ). In other terms, the real power ratio

(18) is going to be proportional to the ideal one, but in a discontinuous manner. Accordingly, it is necessary segmenting

furtherly each functioning mode in order to model the behavior of the involved mechanical devices, which can show their

torque discontinuities at different speed ratios. This leads to numerous variants of the analytical description of the model,

making difficult a deep understanding of the problem and of the influence of its design variables. Furthermore, it may be
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necessary to perform the tests (14) and (17) by mean of the ideal power flow distribution at first, making an iterative

approach necessary in order to obtain rigorous results. 

For the above reasons, we propose in this section an approximate “blind” approach, derived from the previous one, but

which allows the user to ignore such aspects at all, despite relying of the physical consistence of the model. In particular,

a proper functioning of our simplified approach requires that the PSU mechanical loss, and then the deviation of ηZ 
Y/X from

unity, is still minimal. Such occurrence is quite likely in practice for a PS-CVT [49] , which is intended to enhance the per-

formance of a CVU, especially if it is designed for hybrid electric applications. Nevertheless, it is well known that PGs with

a constructive ratio ψ close to unity can show very low values of ηZ 
Y/X , even if the basic efficiency η0 of the PG is very high.

For instance, considering acceptable only a value of | 1 − ηZ 
Y/X | < 0 . 1 (see next Eq. (20) ), then, for an average basic efficiency

of about η0 ≈ 0.95, from Table 1 we get that all the existing transmissions with 0.5 < ψ < 1.5 cannot be analyzed with the

following simplified model. On the contrary, this approach can always be used at the design stage, because such Willis’

ratios are already within a range to be absolutely avoided, as they provide the worst overall results (see Section 6 ). 

5.1. Losses in the planetary gear trains 

If η0 → 1, when it switches to its reciprocal in Eq. (13) , also the related value of ηZ 
Y/X 

, calculated from Table 1 , becomes

about the reciprocal of the previous one. In addition, if we linearize the latter by mean of the Taylor formula, we obtain: 

1 

ηZ 
Y/X 

≈ 2 − ηZ 
Y/X (20) 

Therefore, when η0 switches, ηZ 
Y/X 

→ 

1 

ηZ 
Y/X 

≈ 2 − ηZ 
Y/X 

, and the power loss Eq. (13) remains formally the same, except

its sign. Moreover, since the mechanical losses are a small fraction of the power flows, their effects on the internal power

flows are negligible. Therefore, it is safe to calculate the power losses only by mean of the ideal power flow distribution, i.e.

assuming P̄ x ≈ P x , as they will face even smaller absolute changes anyway. As a result, in Eq. (13) , we can keep ηZ 
Y/X 

constant

(its value can be either greater or lower than one) and write simply: 

P̄ loss 

∣∣
PG 

≈ −
∣∣(1 − ηZ 

Y/X 

)(φz 
x/y − ψ 

z 
x/y 

1 − ψ 

z 
x/y 

)
P x 

∣∣ (21) 

since we know that power loss must be negative anyway. In conclusion, if the basic efficiency η0 of PG is high as usual, and

its Willis’ ratio is far enough from unity, Eq. (21) permits to assess the PG’s power loss in the whole operative range only

by mean of the ideal power flow distribution and ignoring the switches of η0 , and thus those of ηZ 
Y/X . 

5.2. Losses in the ordinary gears 

If a fixed-ratio joint is present in the three-port mechanism, and it can be subject to analogous simplification hypothesis

of the PGs, its losses can be assessed by: 

P̄ loss 

∣∣
OG 

≈ −
∣∣(1 − ηX/x 

)
P x 

∣∣ (22) 

Such losses, summed to those of the planetary gear trains, qualifies the mechanical efficiency of the transmission. 

5.3. Real CVU’s power flows 

Despite ignoring the changes in the internal power flow distribution in order to estimate the PSU’s losses, it is still

interesting to assess with sufficient precision the real power flowing through each shaft of the CVU. Indeed, as already

stated above, for given input and output power, the PSU’s mechanical losses will be compensated by the CVU, whose power

flows will be slightly different from the ideal ones. If we normalize the mechanical power losses in respect of P IN , we can

write the following expressions: 

p̄ L = 

∑ 

p̄ loss 

∣∣
PG 

+ 

∑ 

p̄ loss 

∣∣
OG 

(23) 

p̄ i + p̄ o = θ̄i τi + θ̄o τo = −( 1 − η + p̄ L ) (24) 

We can expect that the real torque ratios θ̄i and θ̄o applied to the shafts of the CVU, despite being different from their

ideal values θ i and θ o , are still linear functions of � = −η/τ , just like θ i and θ o (see Eqs. (2) and (3) ). Accordingly, in order

to assess their new value, we can write a system of two equations, i.e. Eq. (24) and its directional derivative for which � is

constant (and so θ̄i and θ̄o remain constant as well), which is in the direction of the vector [ 
τ
η

] = 

√ 

τ 2 + η2 [ 
ˆ τ
ˆ η
] : 

[
τi τo 

d τi 

dτ
ˆ τ d τo 

dτ
ˆ τ

](
θ̄i 

θ̄o 

)
= 

⎛ 

⎝ 

η − 1 − p̄ L 

ˆ η − ∇ ̄p L ·
[

ˆ τ
ˆ η

]⎞ 

⎠ (25) 
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Table 2 

Apparent efficiency of the PG for different positions of the planet carrier. 

Z Y X ψ( �) ηZ 
Y/X (ψ) ηZ 

Y/X (�) | 1 − ηZ 
Y/X | for η0 → 1 

C R S � ηC 
R/S = ηo ηo | 1 − ηo | 

S C R 1 − 1 
� ηS 

C/R = 

ηo −ψ 
ηo ( 1 −ψ ) 

1 −�
ηo 

+ � | 1 − ηo | | 1 − �| 
R S C 1 

1 −� ηR 
S/C = 

1 −ψ 
η0 −ψ 

( 1 −�−1 

η−1 
o 

+ �−1 ) −1 | 1 − ηo | | 1 −�
� | 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After extensive math, we get: 

p̄ i = θ̄i τi = p i − p̄ L 
τi 

τi # o 

− ∇ ̄p L ·
[
τ
η

]
p i 

∣∣
η=1 

(26)

p̄ o = θ̄o τo = p o − p̄ L 
τo 

τo # i 

− ∇ ̄p L ·
[
τ
η

]
p o 

∣∣
η=1 

(27)

in which ∇ ̄p L is the gradient of p̄ L , defined as ∇ ̄p L = [ 
d ̄p L 
dτ

d ̄p L 
dη

] , p o | η=1 = −p i | η=1 and 

τi 
τi # o 

= 

τ− τ# i 
τ# o −τ# i 

= 1 − τo 
τo # i 

(see

Eqs. (1) –(3) ). 

Once established the power transmitted by the CVU’s shafts to the PSU (positive if entering in the latter), it would be

possible to assess with precision also the real losses of the CVU, i.e. the electrical losses of the two electric machines, thus

calculating the overall losses of the PS-CVT in its entirety. However, we do not perform it because it is not strictly necessary

for the comprehension of our model, which is suitable for any type of CVU. In particular, calculating the electrical losses

accurately would require simply to look up the efficiency map of each involved motor, inverter, battery pack etc. and check

with which efficiency each device is able to deliver (or absorb) the required power at the required speed (known from the

our model). In other terms, our method uncouples the electrical efficiency of the e-CVT from the power flow distribution

(and related mechanical losses) of the planetary transmission, so that engineers can address the two problems separately. 

Eventually, it is worth noting that, for given p̄ L and ∇ ̄p L , Eqs. (26) and (27) are scheme independent, them relying only

on functional parameters, and that they have been obtained with no simplifying assumptions (i.e. are formerly exact), so

only the calculation of p̄ L is a possible source of errors. In theory, the reader may use any model to calculate p̄ L , and then

Eqs. (26) and (27) in order to obtain p̄ i and p̄ o directly. Moreover, if we calculate p̄ L as a function of � and τ (keeping

its relationship with η inplicit), then 

d ̄p L 
dη

= 0 , and the previous equations can be written as a simple, explicit and general

relationship between power losses and power transmitted by the shafts of the CVU, regardless the complexity of the PSU

itself: 

p̄ i = p i − p̄ L 
τi 

τi # o 

− d ̄p L 
dτ

p i 
∣∣
η=1 

(28)

p̄ o = p o − p̄ L 
τo 

τo # i 

− d ̄p L 
dτ

p o 
∣∣
η=1 

(29)

6. Difference of efficiency between functionally equivalent solutions 

In [16] we have performed the design of PS-CVT based on normalized functional parameters neglecting the mechanical

losses in the PSU. It has been shown that these functional parameters govern the kinematics and the ideal power flow

distribution, and they can lead to numerous constructively different solutions. In particular, functionally equivalent TPMs

could be obtained with three different Willis’ ratios, according to the position of the planet carrier. In this section, we are

going to show which of the three possible choices can achieve better results, i.e. lower mechanical losses, keeping unaltered

the functional parameters. 

In particular, in the previous sections, we have shown that the mechanical losses of a PG, for given functional parameters

(i.e. kinematics and ideal power flows), depend mostly on the parameter ηZ 
Y/X 

, which is just function of the position of the

planet carrier (and the related constructive Willis’ ratio see Eq. (13) and Table 1 ). Accordingly, in order to compare the

efficiency of the three possible constructive solutions, we have to: 

- take one of them (and its constructive Willis’ ratio �) as a reference. 

- calculate in function of � the constructive Willis’ ratios ψ of the other two solutions according to the position of their

planet carriers. 

- calculate their respective parameters ηZ 
Y/X 

from Table 1 . 

- express the same parameters ηZ 
Y/X 

as functions of � to ease the comparison. 

- approximate the results to get general design guidelines. 

Namely (see Table 2 ), if we choose X, Y, Z as reference positions for sun S , ring R (or second sun), planet carrier C , and

consequently � = ψ 

Z 
Y/X 

as reference for the Willis’ ratio, then Eq. (11) leads to the column ψ( �) while the relationships of
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Table 1 lead to the column ηZ 
Y/X (ψ) . Then, replacing the content of the column ψ( �) in the column ηZ 

Y/X (ψ) , we get the

column ηZ 
Y/X (�) . The latter would make possible comparing exactly the loss factor of a given transmission (taken it as a

reference, first row) with the other two possible constructive solutions (second and third row). 

Indeed, the farther would be the value of ηZ 
Y/X 

(�) from unity, calculated both for ηo < 1 and for its reciprocal, the worst

would be the losses related to that constructive solution. It is worth noting that, to be faultfinding, ηo could change from

one constructive solution to another because of the different number of meshing pairs necessary to realize certain values of

the constructive Willis’ ratio ψ( �) (and a proper ring gear may not be present as well). 

However, considering that the basic efficiency η0 is generally high (see Section 5.1 ), it is possible to simplify the results

to get some general design guidelines. In particular, if ηo → 1, following the same procedure exemplified by Eq. (20) , we get

the last column of Table 2 . The latter, together with the column ψ( �), shows clearly that whichever is the value of the

reference Willis’ ratio � , two out of the three possible solutions have their constructive Willis’ ratio ψ( �) > 0 and both are

worse than that with ψ( �) < 0. 

In addition, from a more in-depth analysis of the same functions, it results that the worst of the two solutions with ψ > 0

is the one requiring 0.5 < ψ < 2, which is obtained if the carrier of the PG is linked to the shaft that should be connected to

the sun of the PG with ψ < 0 (see Section 7.3 for an example). 

For the above reasons, we suggest to try to limit the design chart to the negative values of the Willis’ ratio, as we did

in [16] . If a negative Willis’ ratio is not feasible, the designer can try, at worst, to connect the carrier to the ring position of

the ideally optimal (but not feasible) solution. In other terms, it is strongly recommended to exclude the possibility of using

constructive Willis’ ratios in the range 0.5 < ψ < 2 as early as in the preliminary design process. 

7. Example 

In this section, we return to the example already examined in detail (but neglecting mechanical losses) in [48] , and we

apply our simplified method to the Voltec PS-CVT ( Fig. 3 ). 

The Voltec offers two PS-CVT modes, and the switch between them occurs when motor A (the shaft “i ”) is still. It can

perform also a fixed-ratio parallel mode or a FEV mode, which can be considered sub-cases of the PS-CVT functioning [48] .

The mechanical points, calculated in [48] are listed in Table 3 (see also Fig. 4 ): 

The final drive is made of a wrapping pair (a chain drive) linked to the sun of a fixed-ring PG, whose carrier is linked to

the final differential, for an overall final drive ratio k out = 

1 
2 . 64 = 0 . 379 . 
Fig. 3. GM Voltec: constructive and functional schematics. 

Table 3 

Functional parameters of the Voltec transmission. 

Mode τ# i τo # i τ# o τi # o 

Shunt 0.247 2.00 0 −1.87 

Compound 0.247 2.00 0.510 2.00 
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Fig. 4. Kinematic relationships between the main shafts of the Voltec. 

 

 

 

 

 

 

 

 

Since no other ordinary gears are involved, in the compound mode the synchronous condition is common to the plane-

tary gear trains PG1 and PG2 and occurs for τ∗ = k out = 0 . 379 , which is between the mechanical points. Conversely, in the

shunt mode, PG1 maintains the same synchronous ratio, but PG2 has become a fixed ratio gearing. 

7.1. Application of the simplified model 

The power losses are: 

p̄ L = p̄ loss 

∣∣
PG 1 

+ p̄ loss 

∣∣
PG 2 

+ p̄ loss 

∣∣
OG 

where, by Eqs. (21) –(22) , 

p̄ loss 

∣∣
PG 1 

= −
∣∣(1 − ηOUT 

I /I N 

)(φout 
in/i 

− ψ 

out 
in/i 

1 − ψ 

out 
in/i 

)
p in 

∣∣

p̄ loss 

∣∣
PG 2 

= −
∣∣(1 − ηOUT 

I/O 

)(φout 
o/i 

− ψ 

out 
o/i 

1 − ψ 

out 
o/i 

)
p o 

∣∣

p̄ loss 

∣∣
OG 

= −
∣∣(1 − ηOUT/out 

)
p out 

∣∣
Accordingly, in order to assess the power losses, we do not need to perform a thorough preliminary power-flow calcu-

lation, but we can rely entirely on Eq. (3) for the calculation of p o , since p̄ in = p in = 1 by definition and p̄ out = p out = −η
is our input known parameter. As regards the other parameters, the characteristic functions and the related constructive

parameters are calculated by mean of Eq. (4) . In particular, for the compound mode, it is: 

φout 
in/i = 

τ − τ# i 

τ − τ# in 

· τ# out − τ# in 

τ# out − τ# i 

= lim 

τ# in →∞ 

τ − 0 . 247 

τ − τ# in 

· 0 − τ# in 

0 − 0 . 247 

= 1 − τ

0 . 247 

ψ 

out 
in/i = φout 

in/i ( τ∗) = φout 
in/i ( 0 . 379 ) = −0 . 536 = ψ 1 

φout 
o/i = 

τ − τ# i 

τ − τ# o 

· τ# out − τ# o 

τ# out − τ# i 

= 

τ − 0 . 247 

τ − 0 . 510 

· 0 − 0 . 510 

0 − 0 . 247 

= 

τ − 0 . 247 

τ − 0 . 510 

· 2 . 065 

ψ 

out 
o/i = φout 

o/i ( τ∗) = φout 
o/i ( 0 . 379 ) = −2 . 077 = 

1 

ψ 2 

As regards the apparent efficiencies, we assume a mean meshing pair efficiency of about 0.98, and then a basic efficiency

η0 = 0 . 96 for all the PGs. We don’t need to use Table 1 for PG1 and PG2, since the output shaft is linked to both their

carriers, and then we can write simply ηOUT 
I /I N 

= ηOUT 
I/O 

= 0 . 96 . 

The calculation of ηOUT / out is more articulated as it is the results of two devices. The final drive ratio is k out = 0 . 379 , there-

fore, assuming that the wrapping pair ratio is k w 

= 1 . 2 , the constructive ratio of PG3 results ψ 3 = −0 . 461 . From Table 1 we

can obtain its apparent efficiency, which is equal to 

ηR 
S/C = 

1 − ψ 3 

1 / ηo − ψ 3 

= 0 . 972 

Accordingly, if the wrapping pair ratio efficiency is ηw 

= 0 . 98 , it is ηOUT /out = 0 . 953 . 
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Fig. 5. Mechanical losses (as a fraction of the input power). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The only parameter that we need to modify in order to address the shunt mode is the value of τ# o (see Table 3 ), which

modifies just p o and φout 
o/i 

accordingly to Eqs. (3) and (4) . The Willis’ ratios are constructive teeth ratios and do not change. 

In Fig. 5 we have plotted the contour map of the mechanical loss as a fraction of the input power for different values

of the overall apparent efficiency η and the overall speed ratio τ , i.e. of the dimensionless output power and speed. As it

could be expected, the power losses show an absolute minimum in correspondence of the synchronous condition and for

null values of the output power (i.e. τ = τ∗ = 0 . 379 and η = 0) . On the contrary, the mechanical losses can be significant

for η > 1 (e.g. during assisted acceleration) and η < 0 (e.g. during regenerative braking), since such conditions imply more

power circulating within the PSU, and they are generally worse for the shunt mode because of the bigger working distance

of the PG1 from its synchronous condition. 

The dash-dot lines represent points of functioning for which the ratio ηv = −p o / p i between the powers flowing through

the shafts of the CVU is constant (blue for 0 < ηv < 1 and red for 1 < ηv < ∞ ). In order to keep the figure clear, we have

represented only the curves related to ηv = 0 . 02 , ηv = 0 . 5 , ηv = 0 . 9 , ηv = 1 and their reciprocals. In correspondence of the

mechanical points, all these curves intercept in a point, which is representative of the fixed-ratio efficiency of the transmis-

sion; indeed, in this condition, finite values of ηv imply that an electric motor is kept still and the other runs unloaded. Vice

versa, if the latter is supplying power, ηv is not finite and for this speed ratio the value of p̄ L can change accordingly to η
(parallel mode). 

In correspondence of the stall speed ( τ = 0 ) the overall apparent efficiency η must be null, since is null the speed of the

output shaft. Such condition is indeed intercepted by the dash-dot curve for ηv → 0, because, for τ = 0 in the shunt mode,

the shaft “o ” must be still as well. Yet, the values of p̄ L for τ = 0 and η � = 0 represent the limit conditions for low values

of both input and output powers; indeed, for values of τ → 0, ηv and η can be different from zero. In conditions of battery

charge sustaining ideally it would be ηv = 1 , but because of the electrical losses we can expect ηv ≈ 0.9, or its reciprocal,

and then a roughly constant output power is obtained in most of the operative range (such condition is represented by the

closest dash-dot line below the black one). 

The data necessary to build the map of Fig. 5 are also sufficient in order to assess the real power flows flowing through

the electric path, by mean of Eqs. (26) and (27) . In particular, the normalized power flowing through the shaft “i ” is Fig. 6

and the one through the shaft “o ” is Fig. 7 . 

Despite the gradient of the mechanical loss p̄ L shows numerous discontinuities, the value of the function itself remains

continuous and it causes a small jump for both p̄ i and p̄ o only in correspondence of the synchronous condition. Nonetheless,

it should be possible to cross the synchronous condition without abrupt changes of the CVU torques or of the output torque

by gradually modifying p̄ i and p̄ o , while maintaining their sum constant accordingly to Eq. (24) . 

Yet, it is worth noting that, since the maps of Figs. 5–7 are normalized in respect of the input power and speed, the

actual boundaries of the operating points may be narrower of those shown in the figures. Indeed, for each target absolute

output speed and power, each couple of variables τ , η define a specific absolute input speed and power (i.e. operating

conditions of the i.c. engine), and then also the required absolute speed and power of the electric motors by mean of the

relationships plotted in Figs. 6–7 . As a result, it is possible to restrain the range of feasible operative conditions accordingly

to the operative limits of the three power units, and to select the optimal working condition combining their own efficiency

maps with that of p̄ L . Similarly, it would be possible to use the previous results in order to redesign a transmission, i.e.

refine the values of τ# i and τ# o obtained by mean of the preliminary calculations suggested in [16] in order to fit the real

power flow distribution and/or a more specific control strategy. In addition, the normalization of results in respect of the

input power implies that they are equally valid when P IN is negative, i.e. when the electric motors are both driving the car

and cranking the i.c. engine. 
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Fig. 6. Power transmitted by the shaft “i” (as a fraction of the input power). 

Fig. 7. Power transmitted by the shaft “o” (as a fraction of the input power). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eventually, Fig. 8 highlights where the gradient of mechanical loss p̄ L ( Fig. 5 ) shows discontinuities. In particular, it shows

the boundaries between zones in which the apparent efficiency of the involved mechanical devices should have switched

due to some reversal of torque, speed or power on their shafts. 

Despite the Voltec transmission is reasonably simple (just two operative modes, up two power-split PGs and no ordinary

gears internal to the PSU), there are nine zones within the studied interval, but far more are possible for slightly more

complex PS-CVTs. Thanks to our simple model, there is no need to predetermine such zones or perform any switch. 

7.2. Model accuracy compared to numerical simulation 

We have simulated the transmission in Simulink Simscape for different values of overall apparent efficiency η (for η =
1.5, 1, 0.5, 0, −0.5) in order to verify the accuracy of the proposed model. Indeed, a comparison only between exact and

approximate analytical results would only prove that we have performed the approximation properly, but not that our model

itself is correct. Vice versa, comparing our results (both exact and approximated) directly with a simulation supports that

our predictions are correct. 

The Simulink model is built using the physical blocks of the Simscape driveline toolbox, without using any additional

customized analytical model. The input parameters of the simulation (teeth ratios, efficiency of gear pairs etc.) are obviously

the same of the model. 

Figs. 9–13 show the comparison between simulated points (markers) and calculated points (solid lines for the approxi-

mated method, dotted lines for the exact one), for both the overall mechanical loss (left) and for the power flowing through

the electric motors (right). As usual, the blue lines refers to the main shaft “i ” (motor A) and the red ones refers to the main

shaft “o ” (motor B). 

As it can be observed, for Figs. 9–13 the error in the assessment of the power loss is within the fraction of centesimal,

while the error for both p̄ and p̄ o is not noticeable. The exact and the simulated result coincide, but the simulation offers
i 
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Fig. 8. Transition zones of the constructive efficiency parameters. 

Fig. 9. Simulated (markers) and calculated (solid lines) mechanical losses (left) and CVU’s power flows for η = 1.5. 

Fig. 10. Simulated (markers) and calculated (solid lines) mechanical losses (left) and CVU’s power flows for η = 1.0. 
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Fig. 11. Simulated (markers) and calculated (solid lines) mechanical losses (left) and CVU’s power flows for η = 0.5. 

Fig. 12. Simulated (markers) and calculated (solid lines) mechanical losses (left) and CVU’s power flows for η = 0. 

Fig. 13. Simulated (markers) and calculated (solid lines) mechanical losses (left) and CVU’s power flows for η = −0.5. 
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Table 4 

Comparison between constructively different solutions for PG1. 

Z ≡ out Y ≡ in X ≡ i ψ( �) | 1 − ηZ 
Y/X | for η0 → 1 

C R S −0 . 536 |0.04| 

S C R 2.87 |0.04| |1.54| 

R S C 0.651 | 0 . 04 | | −2 . 87 | 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

irregular results near the stall speed except for η = 0 , and this is due to the aforementioned reasons, i.e. because η � = 0 for

τ = 0 implies applying infinite absolute torques to the model if the prime engine is not idling, while the blocks in Simulink

Simscape are supposed to work with finite dimensional physical inputs; definitively, our analytical model seems to be more

resilient in such limit conditions. 

7.3. Evaluation of other constructive solutions 

With reference to Section 6 , in this section we assess the effects of a change of the position of the planet carrier in a PG

of the Voltec (and thus choosing a kinematically equivalent, but constructively different gear set). 

For instance, if we try to calculate Table 2 for PG1, we obtain the results of Table 4 which are in plain accordance with

what we have stated in Section 6 : the current solution is optimal because the Willis’ ratio is negative, and the worst scenario

would be the third one, implying 0.5 < ψ < 2, which is when the planet carrier is linked to the shaft “i ”, to which it is linked

the sun gear of the current optimal solution with ψ < 0. 

In particular, the choice of ψ = 0 . 651 would cause a + 187% in the losses of PG1 in the whole operative range. Similar

results can be obtained for PG2, since its Willis’ ratio is −0.481. 

8. Results and discussion 

In [16] , we provide a general method for the design of PS-CVTs by mean of few functional parameters, but neglecting the

mechanical losses in the planetary transmission (PSU). In [48] we suggest a method for the calculation of these functional

parameters for known PS-CVTs. 

In this paper, we describe a method for the assessment of the mechanical losses in the PSU, which relies on the afore-

mentioned functional parameters (mechanical points). In particular, in Section 7 , we apply our simplified approach to

the Voltec transmission, which we had already analyzed in [48] neglecting mechanical losses. As it can be observed in

Section 7.1 , the calculation is very brief, since it is direct and it does not need iterations or a thorough preliminary calcu-

lation. Indeed, in order to calculate the mechanical losses (21) –(22) we use the last between Eq. (3) , Table 1 and Eq. (4) .

The powers flowing through the electric motors are then calculated by mean of Eqs. (26) and (27) . Furthermore, the math-

ematical model used to analyze the two functional modes (shunt and compound) is the same. Indeed, only the value of the

parameter τ# o has to be modified, because the mechanical losses and the real power flows, just like the ideal ones, depend

only on the mechanical points. 

9. Conclusions 

An innovative approximate approach for the analysis of the mechanical losses of planetary transmissions, and specifically

those employed in hybrid electric power-split CVTs, has been described. It can be used alone, or as a complement to the

design and analysis methods published respectively in [16] and [48] . Thanks to its generality, it can be applied to any kind

of PS-CVT, or to discrete planetary transmissions as well. Unlike the exact methods, it makes superfluous to segment the

operating range in order to keep the model physically consistent. Moreover, for each target output speed and power, it

permits calculating the speed and power of the three power units (i.e. of the i.c. engine and of the two electric machines)

directly and by mean of general scheme-independent expressions. 

Eventually, the proposed method has been applied to a real hybrid electric transmission. The errors in respect of the sim-

ulated transmission is negligible, especially considering the advantages of its easier and unified analytical implementation

in respect of an exact method. 
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