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a b s t r a c t

This paper presents an approximate closed-form solution for the free-vibration problem of thin-walled
clamped–clamped cylinders. The used indefinite equations of motion are classic. They derive from
Reissner's version of Love's theory, properly modified with Donnell's assumptions, but an innovative
approach has been used to find the equations of natural frequencies, based on a solving technique similar
to Rayleigh's method, on the Hamilton's principle and on a proper constructions of the eigenfuctions.

Thanks to the used approach, given the geometric and mechanical characteristics of the cylinder, the
model provides the natural frequencies via a sequence of explicit algebraic equations; no complex
numerical resolution, no iterative computation, no convergence analysis is needed.

The predictability of the model was checked both against FEM analysis results and versus experi-
mental and numerical data of literature. These comparisons showed that the maximum error respect to
the exact solutions is less than 10% for all the comparable mode shapes and less than 5%, on the safe side,
respect to the experimental data for the lowest natural frequency.

There are no other models in the literature which are both accurate and easy to use. The accurate
models require complex numerical techniques while the analytical models are not accurate enough.
Therefore the advantage of this novel model respect to the others consists in a best balance between
simplicity and accuracy; it is an ideal tool for engineers who design such shells structures.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Structural elements similar to thin-walled cylinders are widely
used in several engineering fields; for example, cylindrical shell-
like structures exist in pipelines, submarine hulls, aircraft fuse-
lages and missiles. During mechanical processing needed for their
manufacture or during their normal use, these elements are often
stressed by time-varying forces; consequently, there is a need to
characterize the vibratory behaviour to optimise the design and
the production process.

The present paper is composed of five sections and an appen-
dix. This section provides a short historical review of the numer-
ical and analytical models of free vibrations of thin elastic shells.
Section 2 presents the differential equations of motion. In Section
3 and in Appendix the mathematical basis of the present model is
outlined, and the key equations are derived. A detailed analysis of
the results, together with several comparisons with other models
Cammalleri),
and experimental data, is presented in Section 4, followed by
conclusions in Section 5.

In the literature, there are several theories with various
assumptions and simplifications about the vibrations of thin
elastic shells; these theories typically are based on Love's indefi-
nite equilibrium equations derived at the end of 19th century [1].
The research on this topic intensified during the 1960 s and 1970 s
[2] and was further developed in the last two decades [3,4]. Over
the years, linear models valid for small deformations were devel-
oped, along with non-linear models [5] also valid for large
deformations.

In particular, the natural vibrations of thin-walled circular
cylindrical shells were extensively analysed both from a theore-
tical point of view [6–13] and from an experimental point of view
[6,7,11]; a recently published study aimed to adapt the classical
theories to new applications based on carbon nanotubes [14].
However, due to the complexity of the problem, the exact solution
of indefinite equations of motion only exists for circular cylindrical
shells with two opposite shear diaphragm edges [12]. With other
boundary conditions, the integration of these equations is gen-
erally performed with the aid of numerical methods; only in a few
cases the solution has been found analytically, thanks to the
introduction of special simplifying assumptions, but to the
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Nomenclature

a mean radius of the cylinder [m]
A amplitudes of the displacement functions [m]
D bending rigidity of the thin wall [N m]
E Young's modulus [N m�2]
f natural frequency [Hz]
F resultant force vectors per unit length [N m�1]
G shear modulus [N m�2]
H Hamiltonian action [J s]
h wall thickness of the cylinder [m]
k curvatures of the reference surface [m�1]
K extensional rigidity of the shell wall [N m�1]
l length of the cylinder [m]
L Lagrangian function [J]
m number of longitudinal half-waves
M resultant moment vectors per unit length [N]
M moments, per unit length, acting on the infinitesimal

element [N]
n number of circumferential waves
N forces, per unit length, acting on the infinitesimal

element [N m�1]
Q transverse shear forces, per unit length, acting on the

infinitesimal element [N m�1]
r radial unit vector [m]
r radial coordinate [m]
R1, R2, R3 coefficients of the frequency equation
s circumferential unit vector [m]
s circumferential coordinate [m]
t time [s]
u displacements of the reference surface [m]
W virtual work [J]

x longitudinal unit vector [m]
x longitudinal coordinate [m]
X dimensionless longitudinal coordinate
α model dimensionless parameter (see Eq. (26))
β rotations of the tangents to the reference surface [rad]
γ shear deformation of the reference surface
γ(ζ) shear deformation of a generic point
Δ dimensionless frequency factor
ε normal deformations of the reference surface
ε(ζ) normal deformations of a generic point
ζ radial distance of a generic point from the reference

surface [m]
η1;η2 model dimensionless parameter (see Eqs. (21) and

(22))
θ dimensionless circumferential coordinate [rad]
μ model dimensionless parameter (see Eqs. (14) and

(17))
ν Poisson's ratio
ξ model dimensionless parameter (see Eq. (20))
ρ material density [kg m�3]
τ torsion of the reference surface [rad m�1]
φ model dimensionless parameter (see Eq. (26))
Ψ model dimensionless parameter (see Eq. (12))
ω circular frequency [rad s�1]

Subscripts

s circumferential direction
r radial direction
x longitudinal direction
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detriment of accuracy or applicability domain. Arnold and War-
burton [6] were among the first to study this type of problem;
using the energy method and Timoshenko's relationships [15],
they obtained a closed-form approximation of the natural fre-
quencies for the case of simply supported edges. Koval and Cranch
[7] studied the case of clamped–clamped edges using Donnell's
equations [16] and provide an analytical solution as in this paper,
but their model gets a limited applicability domain due to several
oversimplifications. The same issue was addressed by Smith and
Haft [8] using Flügge's equations [17] decoupled by Yu [18] but in
this case as well, the problem was only solved numerically. Also
Xuebin [19] used the Flügge's equations but introducing a new
form of variables separation for arbitrary boundary conditions and
applying the Newton–Raphson iteration method for the resolution
of the frequency equation. Chung [20], using the Sanders' shell
equations, obtained the expression of the frequency equation for
any kind of boundary condition, but with the aid of iterative
numerical method. Callahan and Baruh [9] obtained the natural
frequencies analytically for several boundary conditions using
Junger and Feit's equations [21]. However, the calculation was
based on coefficients dependent on the constraints of geometry
and material characteristics, which can be determined only
numerically; therefore, this is not really a closed-form model.
Wang and Lai [10] introduced a novel approach based on the wave
theory and on the well-known Love's equations, which allowed
them a closed-form resolution for different boundary conditions,
clamped–clamped included as in this paper; however, the solution
results inaccurate for the simpler mode shapes, as occurred for the
Koval and Cranch [7] model. Pellicano [11] conducted both theo-
retical and experimental analyses on linear and nonlinear
vibration based on the Sanders–Koiter theory [22–23] for different
boundary conditions; in this case, the analysis was also performed
using numerical resolution techniques. Recently, further approa-
ches to the problem were developed: Xing et al. [12], working
from the Donnell–Mushtari theory [24], resolved the problem for
different boundary conditions via the variables separation method
associated with the Newton iterative method; moreover, both Xie
et al. [13] and Zhang et al. [25] analysed different boundary con-
ditions using the Goldenveizer–Novozhilov theory [26] but with
different numerical approaches, the former used the Haar wavelet
numerical method, while the latter used the local adaptive dif-
ferential quadrature method. Khalili et al. [27] presented a for-
mulation of 3D refined higher-order shear deformation theory for
the free vibration analysis of simply supported-simply supported
and clamped–clamped cylindrical shells and the solutions are
obtained using the Galerkin numerical method.

The literature review found no models for the free-vibration
problem of clamped–clamped cylinders, which are both accurate
and easy to use. The accurate models require complex numerical
techniques while the analytical models are not accurate enough.
The novel model presented here, in contrast, combines good
accuracy with ease and speed of calculation: it carefully provides
the natural frequencies via a simple sequence of explicit algebraic
equations; no complex numerical resolution, no iterative compu-
tation, no convergence analysis is needed, unlike other models in
the literature or FEM analysis.

The used indefinite motion equations were classic, but an
innovative approach was used to find the equations of natural
frequencies based on a solving technique similar to Rayleigh's
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method, on the Hamilton's principle and on a proper constructions
of the eigenfuctions.

The predictability of the model was checked both against FEM
modal analysis and versus experimental and numerical data of
literature. These comparisons showed that maximum error respect
to the exact solutions is less than 10% for all the comparable mode
shapes and less than 5%, on the safe side, respect to the experi-
mental data for the lowest natural frequency.

The advantage of this novel model respect to the others con-
sists in a best balance between simplicity and accuracy; therefore
it is an ideal tool for engineers who design such shells structures.
2. Differential equations of motion

The indefinite equations of motion used in this paper derive
from Reissner's version [28] of Love's theory [1] modified with
Donnell's assumptions [16], without the introduction of further
simplifications.

Consider a thin-walled circular cylindrical shell, of finite length
l, constant thickness h and mean radius a (see Fig. 1) consisting of
material having a density ρ, Young's modulus E and Poisson's ratio
ν. Fig. 1 shows the reference surface corresponding to the mean
radius and the orthogonal local reference system consisting of
longitudinal direction x, circumferential direction s and radial
direction r.

Fig. 2 shows the graphical representation of the forces and
moments that arise from the internal stress state and act on the
infinitesimal element of the shell. Such internal actions, as well as
the inertial forces, are defined per unit of arc length on the
reference surface and are considered applied on it.

The forces Nx, Qx and Nxs acting on the x¼constant face are the
components of the vector Fx, whereas the forces Ns, Qs and Nsx

acting on the s¼constant face are the components of the vector Fs:

Fx ¼NxxþNxss�Qxr; Fs ¼NsxxþNss�Qsr;

where x, s and r represent the triad of unit vectors of the local
reference system. Similarly, the moments Mx and Mxs acting on the
Fig. 1. Geometry, middle reference surface and local reference system (x, s, r) of a
thin cylindrical shell.

Fig. 2. Internal forces and moments acting o
x¼constant face are the components of the vector Mx, while the
moments Ms and Msx acting on the s¼constant face are the
components of the vector Ms:

Mx ¼ �MxsxþMxs; Ms ¼ �MsxþMsxs:

The indefinite equations of motion for a thin-walled circular
cylindrical shell can be written as follows [28]:

∂Nx

∂x
þ∂Nsx

∂s
¼ ρh

∂2ux

∂t2
;

∂Nxs

∂x
þ∂Ns

∂s
þQs

a
¼ ρh

∂2us

∂t2
;

∂Qx

∂x
þ∂Qs

∂s
�Ns

a
¼ ρh

∂2ur

∂t2
; ð1Þ

∂Mx

∂x
þ∂Msx

∂s
�Qx ¼ 0;

∂Mxs

∂x
þ∂Ms

∂s
�Qs ¼ 0

The displacements ux, us, ur and the rotations βx, βs of the
tangents along x and s (showed in Fig. 3), the deformations εx, εs,
γxs, the curvatures kx, ks and the torsion τ are related by the fol-
lowing congruence equations [28]:

εx ¼
∂ux

∂x
; εs ¼

∂us

∂s
þur

a
; γxs ¼

∂us

∂x
þ∂ux

∂s
ð2:1Þ

βx ¼ �∂ur

∂x
; βs ¼

us

a
�∂ur

∂s
ð2:2Þ

kx ¼
∂βx

∂x
¼ �∂2ur

∂x2
; ks ¼

∂βs

∂s
¼ ∂
∂s

us

a
�∂ur

∂s

� �
;

τ¼ ∂βs

∂x
þ∂βx

∂s
¼ 1

a
∂us

∂x
�2

∂2ur

∂x∂s

ð2:3Þ

where all quantities relate to the reference surface.
The deformations of a generic point distant ζ from the refer-

ence surface can be written as follows:

εx ζ
� �¼ εxþζkx; εs ζ

� �¼ εsþζks; γxs ζ
� �¼ γxsþζτ ð3Þ

where the second terms represent the bending contributions to
the deformation.

Part of the formulation described above may be simplified by
using the approximations first advanced by Donnell [16]. The first
assumption concerns the indefinite equations of motion and
considers the term Qs/a negligible in the equilibrium of the forces
along the circumferential direction s; Eq. (1) are thus reduced to
the following system:

∂Nx

∂x
þ∂Nsx

∂s
¼ ρh

∂2ux

∂t2
;

∂Nxs

∂x
þ∂Ns

∂s
¼ ρh

∂2us

∂t2
; ð4Þ
n the infinitesimal element of the shell.



Fig. 3. Displacements and rotations in a generic point of a clamped–clamped cylinder. (a) Deformed cylinder (b) Cross section (c) Longitudinal section.

M. Cammalleri, A. Costanza / International Journal of Mechanical Sciences 110 (2016) 116–126 119
∂2Mx

∂x2
þ2

∂2Mxs

∂x∂s
þ∂2Ms

∂s2
�Ns

a
¼ ρh

∂2ur

∂t2

where the third equation was obtained by combining the last
equations of (1). The second assumption concerns the congruence
Eq. (2.3); it is assumed that variation in the circumferential dis-
placement us does not influence the curvature ks and the torsion τ;
Eq. (2.3) are then reduced to:

kx ¼ �∂2ur

∂x2
; ks ¼ �∂2ur

∂s2
; τ¼ �2

∂2ur

∂x∂s
ð5Þ

These latter Eq. (5) are equal to the corresponding equations of
the plate theory [15]. The two assumptions explained above are
equivalent to stating that a thin walled cylinder with relatively
small curvature behaves similarly to a thin plate; the only differ-
ences, due to the curvature of the wall, are the presence of Ns/a in
the third equation of motion and the presence of ur/a in the
equation for normal deformation in the circumferential direction
εs. Finally, the constitutive equations are as follows [28]:

Nx ¼ K ϵxþνϵsð Þ; Ns ¼ K ϵsþνϵxð Þ;
Nxs ¼Nsx ¼ K 1�νð Þ

2 γxs ¼Ghγxs;
Mx ¼D kxþνksð Þ; Ms ¼D ksþνkxð Þ;
Mxs ¼Msx ¼ D 1�νð Þτ

2 ¼ Gh3τ=12

ð6Þ

where G is the shear modulus and

K ¼ Eh
1�ν2

; D¼ Eh3

12 1�ν2
� �

are, respectively, the extensional and bending rigidity of the
shell wall.

Substituting the congruence Eqs. (2.1), (2.2) and (5) into the
constitutive Eq. (6) and subsequently replacing into the indefinite
equations of motion (4), the latter are expressed as functions of
the displacements:

K
∂2ux

∂x2
þ1�ν

2a2
∂2ux

∂θ2 þ1þν
2a

∂2us

∂x∂θ
þν
a
∂ur

∂x

� �
¼ ρh

∂2ux

∂t2
;

K
1þν
2a

∂2ux

∂x∂θ
þ1�ν

2
∂2us

∂x2
þ 1
a2

∂2us

∂θ2 þ 1
a2

∂ur

∂θ

� �
¼ ρh

∂2us

∂t2
; ð7Þ
δW ¼ aK
Z 2π

0

Z l

0

∂2ux

∂x2
þ1�ν

2a2
∂2ux

∂θ2 þ1þν
2a

∂2us

∂x∂θ
þν
a
∂ur

∂x
�1�ν2

E
ρ
∂2ux

∂t2

� �
δuxþ

1þν
2a

∂2

∂x

�

� ν
a
∂ux

∂x
þ 1
a2

∂us

∂θ
þur

a2
þh2

12
∂4ur

∂x4
þ 1
a4

∂4ur

∂θ4 þ 2
a

�"
8>>>><
>>>>:
K �ν
a
∂ux

∂x
� 1
a2

∂us

∂θ
�ur

a2
�h2

12
∂4ur

∂x4
þ 1
a4

∂4ur

∂θ4 þ 2
a2

∂4ur

∂x2∂θ2

� �" #
¼ ρh

∂2ur

∂t2

where θ¼s/a.
Finally, the clamped–clamped boundary conditions require that

both the displacements and the rotations vanish at either edges
(see Fig. 3a), and then are expressed by the following equations:

ux ¼ us ¼ ur ¼ 0
βx ¼ βs ¼ 0 for x¼ 0 and x¼ l

(
ð8Þ
3. Equation of natural frequencies

A procedure similar to Rayleigh's method was used to deter-
mine the natural frequencies of the system. Based on the con-
siderations presented below, three displacement functions ux, us,
ur, were defined and adopted as the eigenfunctions of the problem.
However, the corresponding eigenvalues were identified by mak-
ing Hamilton's action constant instead of making Rayleigh's quo-
tient constant. In fact, Hamilton's principle declares that the nat-
ural motions of a mechanical system in which the extreme con-
figurations are known are those that make the Hamiltonian action
H constant for each possible configuration. For a conservative
system, this principle mathematically becomes:

δH ¼ δ
Z t1

t0
Ldt ¼ 0 ð9:1Þ

orZ t1

t0
δWdt ¼ 0 ð9:2Þ

where L is the Lagrangian function (difference between the kinetic
and potential energy of the system), t0 and t1 are the generic
temporal limits of integration and δW is the virtual work performed
by all forces present in the system, including the inertial forces.

The second formulation (9.2) allows one to write Hamilton's
principle without deriving the Lagrangian function L when the
equations of motion are already known. In this case, the virtual
work δW can be easily expressed by multiplying each of the
undefined scalar equations of motion for a virtual reversible dis-
placement along the corresponding direction and so, using Eq. (7):
ux

∂θ
þ1�ν

2
∂2us

∂x2
þ 1
a2

∂2us

∂θ2 þ 1
a2

∂ur

∂θ
�1�ν2

E
ρ
∂2us

∂t2

�
δus

2

∂4ur

∂x2∂θ2

�
þ1�ν2

E
ρ
∂2ur

∂t2

#
δur

9>>>>=
>>>>;
dxdθ ð10Þ



Fig. 4. Mode shape of a thin-walled circular cylinder with clamped edges; n¼5 and m¼1 (image resulting from FEM modal analysis).
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The deformation in free vibration of a thin-walled circular
cylinder consists of a positive integer n of waves on the section
orthogonal to the axis and a positive integer m of half-waves on
the section containing the axis, henceforth called circumferential
waves and longitudinal half-waves, respectively. Therefore, each
mode shape is characterized by a pair of values of n and m (see, for
example, Fig. 4).

The shape of the circumferential waves is independent of the
boundary conditions, while the shape of the longitudinal half-
waves depends on boundary conditions and is similar to the
flexural vibrations of beams subject to the same constraints
[10,13].

These considerations, together with the need to construct
eigenfunctions that, respecting the constraint conditions and
mutual orthogonality, were analytically manageable in the sub-
sequent steps of derivation and integration, led the authors to
distinguish between odd and even numbers of longitudinal half-
waves (see Appendix for more details). For odd m:

ux ¼ Ax � sinμ
1
2
�X

� �
þΨ sinhμ

1
2
�X

� �� �
cosnθ cosωt;

us ¼ As cosμ
1
2
�X

� �
þΨ coshμ

1
2
�X

� �� �
sinnθ cosωt; ð11Þ

ur ¼ Ar cosμ
1
2
�X

� �
þΨcoshμ

1
2
�X

� �� �
cosnθ cosωt;

where Ax, As and Ar are arbitrary coefficients, ω is the circular
frequency, X¼x/l and, to comply with the boundary conditions,

Ψ ¼ sin μ=2
� �

sinh μ=2
� �: ð12Þ

The quantity μ must satisfy the equation

tan
μ
2
þtanh

μ
2
¼ 0; ð13Þ

whose roots are (in addition to the value 0):

μ� 1:506þ m�1ð Þ½ �π; ð14Þ
for m¼1, 3, 5, 7

For even m, the eigenfunctions become:

ux ¼ Ax � cosμ
1
2
�X

� �
þΨcoshμ

1
2
�X

� �� �
cosnθ cosωt;

us ¼ As sinμ
1
2
�X

� �
�Ψ sinhμ

1
2
�X

� �� �
sinnθ cosωt ð15Þ

ur ¼ Ar sinμ
1
2
�X

� �
�Ψ sinhμ

1
2
�X

� �� �
cosnθ cosωt;

in which the quantity μ satisfies the equation
tan
μ
2
�tanh

μ
2
¼ 0; ð16Þ

whose roots are (in addition to the value 0):

μ� 2:500þ m�2ð Þ½ �π; ð17Þ
for m¼2, 4, 6, 8, …
and ψ is again Eq. (12).
Substituting into Eq. (10) both the partial derivatives ∂… and

the virtual displacements δ… of ux, us and ur, and integrating with
respect to x and θ gives the elementary virtual work. Subse-
quently, integrating Eq. (9.2) with respect to time t, after intricate
manipulation, gives:

ξ2η1þ
1
2
1�νð Þn2η2�η2Δ

� �
Ax�

1
2
1þνð Þξnη2As�ξνη2Ar

� 	
δAx

þ �1
2
1þνð Þξnη2Axþ n2η1þ

1�ν
2

ξ2η2�η1Δ
� �

Asþnη1Ar

� 	
δAs

þ ξνη2Ax�nη1As� η1�η1Δþ h2

12a2
ξ4η1þn4η1þ2ξ2n2η2

 �" #

Ar

( )
δAr ¼ 0

ð18Þ
where

Δ¼ ρa2 1�ν2
� �ω2

E
ð19Þ

is the dimensionless frequency factor and

ξ¼ μa
l

ð20Þ

Moreover, for an odd number m of longitudinal half-waves

η1 ¼ 1þΨ 2
; η2 ¼ 1�Ψ 2þ2

μ
sinμ; ð21Þ

while for an even number m of longitudinal half-waves,

η1 ¼ �1þΨ 2
; η2 ¼ �1�Ψ 2þ2

μ
sinμ: ð22Þ

Because the quantities δAx, δAs and δAr are arbitrary, Eq. (18)
can be satisfied only if the quantities in the braces vanish indivi-
dually. If these quantities are set to zero, a homogeneous system of
three linear equations in three unknowns is obtained: Ax, As and Ar.
To avoid the trivial solution, the determinant of the coefficients is
set to zero, giving the following cubic equation for the frequency
factor Δ:

Δ3�R2Δ2þR1Δ�R0 ¼ 0; ð23Þ
where

R2 ¼ η1
η2
þ1�ν

2
η2
η1


 �
ξ2þ1þ3�ν

2 n2þ h2

12a2 ξ4þn4þ2ξ2n2η2
η1


 �
;

R1 ¼ 1�ν
2 ξ4þn4

 �

þ η1
η2
�νη2

η1


 �
ξ2n2þ1�ν

2 n2þξ2 η1
η2
þη2

η1

1�ν�2ν2ð Þ
2

h i
þ h2

12a2
1�ν
2 n2þξ2η2η1


 �
þn2þξ2η1η2

h i
ξ4þn4þ2ξ2n2η2

η1


 � ð24Þ
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R0 ¼
1�ν
2

1�ν
η2
η1

� �2
" #

ξ4þ h2

12a2
ξ2n2 1þν

2
η2
η1

�η1
η2

� 1�ν
2

� �2η2
η1

" #(

þ1�ν
2

ξ4þn4

 �	

ξ4þn4þ2ξ2n2η2
η1

� �
:

Eq. (23) has three different, real and positive roots:

Δ1 ¼ 2α1=3 cos
φþ2π

3
þR2

3
;

Δ2 ¼ 2α1=3 cos
φþ4π

3
þR2

3
; ð25Þ

Δ3 ¼ 2α1=3 cos
φ
3
þR2

3
;

where

α¼ � 1
27

R1�
R2

2

3

 !3
2
4

3
5
1=2

; φ¼ acos
1
2α

R0�
R1R2

3
þ2R2

3

27

 !" #
:

ð26Þ
Once the values of Δ1, Δ2 and Δ3 were known, the three natural

frequencies f1, f2 and f3 were calculated by simple manipulation of
Eq. (19):

f 1;2;3 ¼
ω1;2;3

2π
¼ 1
2πa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EΔ1;2;3

ρ 1�ν2
� �

s
: ð27Þ
Table 1
Natural frequencies for nr14 and mr10 (a¼3 inE76 mm, l¼12 inE305 mm, h¼0.01

n m¼1 m¼2 m¼3

f1 [Hz] f2 [Hz] f3 [Hz] f1 [Hz] f2 [Hz] f3 [Hz] f1 [Hz] f2 [H

1 3653 15,226 20,208 6379 16,971 27,385 7904 20,
2 2017 20,412 27,304 4033 22,467 32,715 5669 25,
3 1192 25,505 36,998 2614 27,774 40,837 4011 30,
4 772 31,052 47,458 1776 33,186 50,375 2892 35,
5 564 36,938 58,227 1274 38,851 60,574 2146 41,
6 501 43,041 69,155 980 44,741 71,116 1651 47,
7 548 49,284 80,173 839 50,800 81,858 1335 52,
8 668 55,622 91,249 823 56,984 92,725 1162 58,
9 833 62,026 102,363 906 63,258 103,676 1113 65,

10 1029 68,477 113,505 1058 69,601 114,687 1170 71,
11 1252 74,965 124,666 1256 75,997 125,742 1308 77,
12 1498 81,479 135,843 1489 82,433 136,829 1504 83,
13 1767 88,015 147,030 1750 88,900 147,941 1743 90,
14 2058 94,567 58,227 2037 95,393 159,073 2016 96,

n m¼6 m¼7 m¼8

f1 [Hz] f2 [Hz] f3 [Hz] f1 [Hz] f2 [Hz] f3 [Hz] f1 [Hz] f2 [H

1 9193 33,859 61,365 9305 38,834 70,069 9375 43,
2 8127 36,731 63,985 8474 41,266 72,404 8715 45,
3 6871 40,734 68,245 7413 44,812 76,214 7822 49,
4 5693 45,354 73,965 6341 49,064 81,366 6866 53,
5 4692 50,314 80,900 5371 53,749 87,683 5952 57,
6 3878 55,497 88,788 4541 58,719 94,961 5134 62,
7 3233 60,855 97,399 3852 63,898 103,006 4429 67
8 2733 66,364 106,547 3295 69,246 111,651 3836 72,
9 2360 72,010 116,097 2856 74,741 120,761 3349 77,

10 2104 77,775 125,952 2527 80,364 130,232 2965 83,
11 1960 83,645 136,038 2305 86,100 139,986 2680 88,
12 1923 89,606 146,305 2189 91,936 149,964 2495 94,
13 1984 95,645 156,716 2174 97,858 160,121 2409 100,
14 2129 101,751 167,240 2253 103,856 170,423 2421 106,
Despite the complex mathematics used to obtain the natural
frequencies (27), the practical use of the model is much simpler;
given the geometric and mechanical characteristics of the cylinder
(length l, mean radius a, thickness h, Young's modulus E, Poisson's
ratio ν and density ρ), for fixed mode shape (values m and n) the
following parameters are sequentially calculated using algebraic
equations: μ via (14) or (17), ψ and ξ via (12) and (20), η1 and η2
via (21) or (22), R2, R1 and R0 via (24), α and ϕ via (26), Δ via (25)
and finally f via (27).

The system of linear equations that relates Ax, As and Ar is
homogeneous, so the following amplitude ratios can be
obtained:

Ax

Ar
¼
ξνη2þ1

2 1þνð Þξnη2 η1�Δη1þ h2

12a2 ξ4η1þn4η1þ2ξ2n2η2

 �h i

1
2 1þνð Þξ2νnη22�nη1 ξ2η1þ1

2 1�νð Þn2η2�Δη2
h i ;

As

Ar
¼

η1�Δη1þ h2

12a2 ξ4η1þn4η1þ2ξ2n2η2

 �h i

ξ2η1þ1
2 1�νð Þn2η2�Δη2

h i
�ξ2ν2η2

1
2 1þνð Þξ2νnη22�nη1 ξ2η1þ1

2 1�νð Þn2η2�Δη2
h i

ð28Þ

Therefore, for each mode shape (defined by a pair of values n
and m), the model analytically provides three natural frequencies
and two amplitude ratios. These results are in close correspon-
dence with analogous studies [6,10,29]. Each vibration mode is
characterized by one natural frequency and one mode shape. The
essential difference between a vibration mode and another with
the same mode shape consists, in addition to the frequency, in the
in¼0.254 mm, ρ¼0.283 lb/in3E7833 kg/m3, E¼30*106 psiE207 kN/mm2, ν¼0.3).

m¼4 m¼5

z] f3 [Hz] f1 [Hz] f2 [Hz] f3 [Hz] f1 [Hz] f2 [Hz] f3 [Hz]

213 35,633 8639 24,379 44,108 9000 29,006 52,703
216 39,817 6834 28,565 47,587 7612 32,456 55,689
542 46,465 5205 33,558 53,183 6150 36,961 60,524
911 54,829 3960 38,791 60,478 4901 41,926 66,945
416 64,206 3052 44,165 68,966 3914 47,122 74,604
102 74,168 2400 49,691 78,238 3157 52,489 83,166
959 84,485 1940 55,373 88,023 2587 58,011 92,366
956 95,030 1631 61,199 98,151 2169 63,678 102,018
066 105,729 1454 67,149 108,518 1883 69,473 111,994
265 116,537 1395 73,201 119,056 1717 75,381 122,209
535 127,424 1442 79,339 129,721 1665 81,384 132,603
861 138,372 1574 85,547 140,481 1714 87,470 143,134
232 149,366 1771 91,812 151,315 1849 93,624 153,772
641 160,396 2017 98,126 162,209 2052 99,836 164,495

m¼9 m¼10

z] f3 [Hz] f1 [Hz] f2 [Hz] f3 [Hz] f1 [Hz] f2 [Hz] f3 [Hz]

880 78,802 9423 48,971 87,555 9459 54,092 96,322
975 80,908 8888 50,803 89,473 9018 55,716 98,084
127 84,354 8135 53,623 92,620 8378 58,256 100,979
022 89,040 7289 57,190 96,916 7632 61,527 104,944
417 94,830 6445 61,295 102,255 6861 65,357 109,894
153 101,566 5658 65,787 108,511 6117 69,605 115,729
,137 109,087 4955 70,565 115,554 5431 74,171 122,338
315 117,245 4345 75,564 75,564 4818 78,985 129,613
655 125,916 3828 80,744 131,499 4284 84,000 137,451
135 134,995 3402 86,078 140,189 3830 89,183 145,762
737 144,403 3068 91,543 149,245 3458 94,510 154,468
446 154,074 2826 97,125 158,600 3171 99,963 163,504
251 163,960 2679 102,810 168,202 2972 105,526 172,816
138 174,021 2628 108,585 178,008 2864 111,188 182,359
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relative amplitude of the displacements ux, ur and us, as showed in
the following section.
Table 2
Amplitude ratios for mr10 and n¼6 (a¼3 inE76 mm, l¼12 inE305 mm,
h¼0.01 in¼0.254 mm, ρ¼0.283 lb/in3E7833 kg/m3, E¼30*106 psiE207 kN/mm2,
ν¼0.3).

m¼1 m¼2 m¼3 m¼4 m¼5

Ax/Ar As/Ar Ax/Ar As/Ar Ax/Ar As/Ar Ax/Ar As/Ar Ax/Ar As/Ar

f1 0.06 0.17 0.07 0.17 0.09 0.17 0.08 0.18 0.09 0.16
f2 29.00 3.28 13.68 3.43 9.46 3.86 7.69 4.21 6.66 4.77
f3 1.24 6.09 2.19 6.33 3.32 6.70 4.68 7.19 6.23 7.74

m¼6 m¼7 m¼8 m¼9 m¼10

Ax/Ar As/Ar Ax/Ar As/Ar Ax/Ar As/Ar Ax/Ar As/Ar Ax/Ar As/Ar

f1 0.07 0.18 0.08 0.15 0.06 0.17 0.07 0.13 0.05 0.15
f2 6.17 5.27 5.86 5.99 5.78 6.67 5.74 7.56 5.84 8.44
f3 8.03 8.38 9.98 8.99 12.16 9.69 14.44 10.28 16.90 10.95

Fig. 5. Comparison between the f1 natural frequencies calculated with the present mod
h¼0.01 in¼0.254 mm, ρ¼0.283 lb/in3E7833 kg/m3, E¼30*106 psi E207 kN/mm2, ν¼0
4. Results and discussion

Table 1 shows the frequencies f1, f2 and f3 for a cylinder
having the same geometric, physical and mechanical char-
acteristics of those used by other authors [7,8,12]. It is inter-
esting to note that the f1 frequencies are smaller, by one or two
orders of magnitude, than frequencies f2 and f3. These results
are in keeping with previous studies [7,8,12]. Furthermore, f2
and f3 increase monotonically with an increase in the number
of n and m, which is in line with the results from the free
vibrations of beams and plates, where the natural frequencies
increase with the complexity of the waveforms. On the con-
trary, for fixed m and variable n, the f1 frequencies show a
minimum. The value of n for which f1 is minimum grows as m
increases. Additionally, at fixed n, the f1 frequencies increase
monotonically with m if no12, while showing a minimum for
nZ12. The seemingly anomalous trend of the f1 frequencies,
which first decrease and then increase with n, was first
observed by Arnold and Warburton [6] who, in the case of
freely supported ends, were able to explain the phenomenon
el and other results, for mr4 and nr14 (a¼3 in E76 mm, l¼12 in E305 mm,
.3).
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by considering the strain energy associated with bending and
stretching of the reference surface.

Table 2 shows an example of the amplitude ratios (28) calcu-
lated for mr10 and for n¼6. Similar trends are obtained for other
values of n. These results indicate that, at the lowest natural f1
frequency, the predominant amplitude is Ar and the motion
associated with this frequency is, therefore, mostly radial. This
mode of free vibration is then called transverse mode. Conversely,
at frequencies f2 and f3, longitudinal motion and the circumfer-
ential motion, respectively, prevail for low values of m, while as m
increases, the two components of motion assume similar ampli-
tudes. Nevertheless, the mode of free vibration associated with f2
is usually referred to as longitudinal mode and that associated
with f3 is called circumferential mode.

In the literature [6–13], particular attention was devoted to the
study of the f1 frequencies because of their greater importance to
the resonance problems.

To check the validity of the model presented in this study, the
calculated f1 frequencies have been compared as a first step with
the results of FEM modal analysis conducted by the authors. The
FEM analysis was realized in ANSYS 14 using 5856 SHELL181 linear
elements. This level of discretization was chosen after a con-
vergence analysis that allowed the authors to assess the modal
analysis results when decreasing the average size of the element.
Successively, the model was validated against experimental data of
Koval and Cranch [7] and versus results of other four models of
literature: two numerical, i.e. Xing et al. [12] and Smith and Haft
[8], and two analytical, i.e. Koval and Cranch [7] and Wang and Lai
[10]. Fig. 5 shows these comparisons for the cases mr4 and
nr14. As regards the Wang and Lai model, data were calculated
Table 3
Comparison of f1 frequencies [Hz] from present model with other alternative studies
ρ¼0.283 lb/in3E7833 kg/m3, E¼30*106 psiE207 kN/mm2, ν¼0.3), n.a.¼not available.

m Method n

1 2

1 Analytical Present work 3653 2017
Koval and Cranch n.a. n.a.
Wang and Lai 4811 2452

Numerical Xing et al. 3425 1917
Smith 3427 1918

FEM Present work 3439 1928
Experimental Koval and Cranch n.a. n.a.

2 Analytical Present work 6379 4033
Koval and Cranch n.a. n.a.
Wang and Lai 7683 4824

Numerical Xing et al. 6412 3903
Smith 6423 3905

FEM Present work 5893 3932
Experimental Koval and Cranch n.a. n.a.

3 Analytical Present work 7904 5669
Koval and Cranch n.a. n.a.
Wang and Lai 9120 6656

Numerical Xing et al. 8493 5841
Smith n.a. 5844

FEM Present work 8026 5893
Experimental Koval and Cranch n.a. n.a.

4 Analytical Present work 8639 6834
Koval and Cranch n.a. n.a.
Wang and Lai 9774 7889

Numerical Xing et al. 9420 7299
Smith n.a. 7303

FEM Present work 9479 7370
Experimental Koval and Cranch n.a. n.a.
by the authors of the current work because those reported in [10]
referred to a cylinder with different geometric and mechanical
characteristics.

At a first glance, it is evident that the present model, the FEM
analysis and the two numerical models are in good agreement
both between themselves and with the experimental data, for all
the investigated mode shapes; moreover the trends of the two
numerical methods seem indistinguishable from one another. On
the contrary the two analytical models part from other trends and
become inaccurate for small values of n, as the same authors of the
two models admit.

In light of the above, in the next steps, in order to quantify the
percentage differences between the various results but also to
reduce the number of possible comparisons only the most relevant
results were taken into account, i.e. the mode shapes with nr8.
Moreover only the Wang and Lai analytical model and the Xing
et al. numerical model were considered. The first, in effect, proved
to be more accurate than Koval and Cranch model, while the
second has been chosen since it uses the same indefinite equations
of motion of the present paper but, using numerical methods of
resolution, gets the “exact” solutions. This inducted the authors to
consider these latter results, together with the experimental data
of Koval and Cranch, as benchmark for assessing the accuracy of
the present model. Tables 3 and 4 report these further outcomes.
They show that the maximum error of the present model respect
to the experimental data is less than 17% (form¼1, n¼3) while the
discrepancy respect to Xing et al. exact solutions is within a
maximum of 10% (for m¼3, n¼8). However, it is worth noting that
the maximum difference between the Xing et al. exact solutions
and the experimental data is at 13% (for m¼1, n¼3). On the other
for mr4 and nr8, (a¼3 in E76 mm, l¼12 inE305 mm, h¼0.01 in¼0.254 mm,

3 4 5 6 7 8

1192 772 564 501 548 668
1587 926 646 563 606 727
1356 847 615 552 605 728
1154 764 580 538 598 723
1145 765 580 538 597 721
1163 770 584 542 607 743
1025 700 559 525 587 720

2614 1776 1274 980 839 823
4365 2515 1645 1197 987 940
3050 2025 1434 1103 953 939
2537 1752 1287 1022 907 911
2538 1753 1287 1022 907 911
2560 1772 1304 1037 924 935
n.a. 1620 1210 980 838 900

4011 2892 2146 1651 1335 1162
8551 4921 3193 2256 1721 1434
4695 3348 2461 1889 1538 1355
4052 2920 2191 1720 1431 1287
4054 2921 2192 1720 1431 1287
4097 2959 2227 1752 1462 1321
n.a. n.a. n.a. 1650 1395 1350

5205 3960 3052 2400 1940 1631
14,135 8133 5267 3695 2759 2190
6053 4597 3529 2771 2251 1917
5444 4102 3167 2518 2077 1797
5447 4104 3168 2516 2076 1797
5512 4166 3227 2574 2130 1850
n.a. n.a. n.a. n.a. 1960 1765



Table 4
Comparison of the percentage errors on the f1 frequencies for mr4 and nr8, (a¼3 in E76 mm, l¼12 inE305 mm, h¼0.01 in¼0.254 mm, ρ¼0.283 lb/in3 E7833 kg/m3,
E¼30*106 psiE207 kN/mm2, ν¼0.3), n.a.¼not available.

m Comparison n

1 2 3 4 5 6 7 8

1 Present vs experimental n.a. n.a. 16.3% 10.2% 0.9% �4.6% �6.6% �7.2%
Present vs Xing et al. 6.7% 5.2% 3.3% 1.0% �2.8% -6.9% �8.3% �7.6%
Wang and Lai vs experimental n.a. n.a. 32.3% 20.9% 10.0% 5.2% 3.0% 1.0%
Wang and Lai vs Xing et al. 40.5% 27.9% 17.5% 10.8% 6.0% 2.6% 1.1% 0.6%
Xing et al. vs experimental n.a. n.a. 12.6% 9.1% 3.8% 2.5% 1.9% 0.4%

2 Present vs experimental n.a. n.a. n.a. 9.6% 5.3% 0.0% 0.1% -8.5%
Present vs Xing et al. �0.5% 3.3% 3.0% 1.4% �1.0% �4.1% �7.5% �9.6%
Wang and Lai vs experimental n.a. n.a. n.a. 25.0% 18.5% 12.6% 13.7% 4.3%
Wang and Lai vs Xing et al. 19.8% 23.6% 20.2% 15.6% 11.4% 8.0% 5.0% 3.0%
Xing et al. vs experimental n.a. n.a. n.a. 8.1% 6.4% 4.3% 8.2% 1.2%

3 Present vs experimental n.a. n.a. n.a. n.a. n.a. 0.1% �4.3% -14.0%
Present vs Xing et al. �6.9% �2.9% �1.0% �1.0% �2.0% �4.0% �6.7% �9.7%
Wang and Lai vs experimental n.a. n.a. n.a. n.a. n.a. 14.5% 10.2% 0.4%
Wang and Lai vs Xing et al. 7.4% 14.0% 15.9% 14.6% 12.3% 9.8% 7.4% 5.3%
Xing et al. vs experimental n.a. n.a. n.a. n.a. n.a. 4.2% 2.6% �4.7%

4 Present vs experimental n.a. n.a. n.a. n.a. n.a. n.a. �1.0% �7.6%
Present vs Xing et al. �8.3% �6.4% �4.4% �3.5% �3.6% �4.7% �6.6% �9.2%
Wang and Lai vs experimental n.a. n.a. n.a. n.a. n.a. n.a. 14.9% 8.6%
Wang and Lai vs Xing et al. 3.8% 8.1% 11.2% 12.1% 11.4% 10.1% 8.4% 6.7%
Xing et al. vs experimental n.a. n.a. n.a. n.a. n.a. n.a. 6.0% 1.8%
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hand, it is also to be considered that the disagreement between
theory and experiments could be partly due to the imperfect
clamping of the experimental specimens as well as to the una-
voidable measurement error.

As regards the Wang and Lai analytical model, the maximum
error is at 33% (for m¼1, n¼3) respect to the experimental data
and at 41% (for m¼1, n¼1) versus Xing et al.

Finally, with reference to the lowest experimental natural fre-
quency, properly identified by all models for m¼1 and n¼6, the
present model gives an underestimation of 4.6%, Xing et al. an
overestimation of 2.5% and Wang and Lai an overestimation
of 5.2%.

From the analysis of the above results, it can be concluded that
the presented model is only a bit less accurate of the exact solu-
tions found numerically, also for those mode shapes for which the
other analytical models, more or less, fail. Moreover the present
model is the only one that has slightly underestimated the lowest
natural frequency and this could result in the advantage of safely
identifying the first resonance frequency of the real physical sys-
tem. Lastly, the lower accuracy of the present model respect to the
numerical ones, is widely compensated by its much greater ease of
use and by its low computational cost, without iterative calcula-
tions and without problems of convergence of the solution.
5. Conclusion

In this paper, a new mathematical model to calculate the nat-
ural frequencies of isotropic thin-walled circular cylindrical shells
with clamped edges was presented.

The joint use of Hamilton's principle and of a solving techni-
que similar to Rayleigh’s method, as well as of a proper metho-
dology for the derivation of the eigenfunctions, allows for an
explicit closed-form solution that combines good precision with
ease of calculation: given the geometric and mechanical
characteristics of the cylinder, it carefully provides the natural
frequencies via a sequence of explicit algebraic equations. Other
models present in the literature obtain a little higher accuracy
but via numerical resolutions of the differential equations of
motion, with the related complexity of implementation and of
solution convergence. Other analytical models have ease of cal-
culation comparable to the present model but fail for a small
value of circumferential waves.

A comparative analysis with experimental and numerical data
from the literature showed that the maximum error respect to the
exact solutions is less than 10% for all the comparable mode
shapes and less than 5%, on the safe side, respect to the experi-
mental data for the lowest natural frequency.

Therefore the advantage of this novel model respect to the
others consists in a best balance between simplicity and accuracy
resulting an ideal tool for engineers who design such shells
structures.

Extensions of the present approach for different boundary
conditions and for the case of rotating shells are under con-
sideration. The real constraints are yielding, and the use of proper
suspension systems could have a beneficial effect on rotor hys-
teretic instability [30,31]. Furthermore, when shells of revolutions
rotate, it is necessary to take into account the Coriolis and cen-
trifugal accelerations as well as the hoop tension due to angular
velocities in the differential equations of motion. These effects
have significant influence on the dynamic behaviour of rotating
shells, and their structural frequency characteristics are qualita-
tively altered [32–34].
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Appendix

In general, the displacement of a point in a thin shell is a
function of the position and of the time, i.e.

u¼ uðx;θ; tÞ
however, in order to find approximate solutions of the indefinite
equations of motion, analogously to other problems regarding
vibrations of continuous systems, it is convenient to write each
eigenfunction in the form

u… ¼ A…∙f… xð Þ∙g… θ
� �

∙ cosωt
The clamped–clamped boundary conditions require (see Eqs.

(8) and (2.2)):

ux ¼ us ¼ ur ¼ 0
∂ur

∂x
¼ ∂ur

∂θ
¼ 0 for\x¼ 0 and\x¼ l

8<
: ðA:1Þ

while the mutual orthogonality conditions require:R
VuruxdV ¼ 0R
VurusdV ¼ 0

(

where V is the volume of the cylinder, and soR l
0 f r xð Þf x xð Þdx R 2π0 gr θ

� �
gx θ
� �

dθ¼ 0R l
0 f r xð Þf s xð Þdx R 2π0 gr θ

� �
gs θ
� �

dθ¼ 0

8<
: ðA:2Þ

Considering that the shape of the circumferential waves is
independent of the boundary conditions while the shape of the
longitudinal half-waves depends on boundary conditions and is
similar to the flexural vibrations of gr θ

� �¼ cos nθ
� �

beams subject
to the same constraints [10,13], for the radial displacement ur, it is
suitable to chose and f r xð Þ similar to the eigenfunctions of the
beam subject to the same constraints. As regards the functions g…
θ
� �

and f… xð Þ of the other displacements, ux and us, it easy to see
that both the boundary conditions and the mutual orthogonality
conditions result identically satisfied if one puts

f x xð Þp d
dx

f r xð Þ

gx θ
� �

pgr θ
� �

f s xð Þp f r xð Þ

gs θ
� �

p
d
dθ

gr θ
� �

and therefore:

ux ¼ Ax∙ ddx f r xð Þ∙ cos nθ
� �

∙ cosωt

us ¼ As∙f r xð Þ∙ sin nθ
� �

∙ cosωt

ur ¼ Ar∙f r xð Þ∙ cos nθ
� �

∙ cosωt

8>><
>>: ðA:3Þ

∂ur

∂x
¼ Ar∙ ddx f r xð Þ∙ cos nθ

� �
∙ cosωt

∂ur

∂θ
¼ �n∙Ar∙f r xð Þ∙ sin nθ

� �
∙ cosωt

8>><
>>: ðA:4Þ

In this way, all the functions (A.3) and (A.4) are proportional to
f r or to

df r
dx and, being f r the eigenfunction of the clamped–clamped

beam, f r ¼ 0 and df r
dx ¼ 0 at either end, and consequently the

boundary conditions (A.1) result satisfied.
Moreover, the mutual orthogonality conditions (A.2) reduce toR f r lð Þ
f r 0ð Þ f rdf r

R 2π
0 gr θ

� � �2dθ¼ 0R l
0 f r xð Þ �2dx R gr 2πð Þ

gr 0ð Þ grdgr ¼ 0

8<
: ðA:5Þ

which are identically satisfied because the upper and the lower
integration limits in the first or in the second integral of Eq. (A.5)
are equal (remember that gr θ

� �¼ cos nθ
� �

).
As regards the most convenient form to be given to the f r xð Þ

function, consider the following.
As well known, the mode shapes of the clamped–clamped

beam are proportional to:

f r xð Þ ¼ sinμX�sinh μX
� �þΨ cosμX�cosh μX

� �
where X¼x/l, Ψ¼ sinh μ� sinμ

cosμ� cosh μ and μ indicates one of the infinite
roots of the frequency equation cosμ coshμ¼ 1.

Therefore, substituting into Eq. (10) both the partial derivatives
∂… and the virtual displacementsδ… of ux, us and ur, we will have
80 addends in the first line, 80 in the second, and 112 in the third,
for a total of 272 initial addends to be collected and then inte-
grated. However, the symmetry of the boundary conditions may
yield a simplified expression for f r xð Þ with only two addends
provided that the symmetric and anti-symmetric waves are con-
sidered separately. In this way, we have 20 addends in the first
line, 20 in the second, and 28 in the third, for a total of 68 initial
addends to be collected and integrated.

Then, for the odd numbers m of the longitudinal half-waves,
the eigenfunctions can be written as:

f r xð Þ ¼ cosμ
1
2
�X

� �
þΨ cosh μ

1
2
�X

� �
ðA:6Þ

where to comply with the boundary conditions Ψ¼ sin μ=2ð Þ
sinh μ=2ð Þ and μ

must satisfy the equation
tan μ

2þtanh μ
2 ¼ 0, whose roots are μ� 1:506þ m�1ð Þ½ �π.

For the even numbers m of the longitudinal half-waves Eq.
(A.6) must be modified by replacing cos’-sin, cosh’-�sinh,
so

f r xð Þ ¼ sinμ
1
2
�X

� �
�Ψ sinhμ

1
2
�X

� �
ðA:7Þ

in which ψ is the same as before but μ, this time, must satisfy the
equation tan μ

2�tanh μ
2 ¼ 0, whose roots are μ� 2:500þ m�2ð Þ½ �π.

Therefore, finally, replacing Eqs. (A.6) or (A.7) into Eq. (A.3) one
gets Eqs. (11) and (15) respectively.
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