
  

  

Abstract— The mechanical response of pneumatic artificial 
muscles is analyzed assuming the inextensibility of the sheathing 
braids and taking into account the stress field inside the rubber 
bladder, which is regarded as a Mooney-Rivlin hyperelastic 
material. The end effects are simulated by heuristically profiling 
the meridian section. After estimating the constitutive 
parameters by traction tests on rubber specimens, the 
theoretical results are compared with experiments and a 
satisfactory accordance may be detected. 

LIST OF SYMBOLS 

c  clearance ratio of sheath radius to bladder outer 
radius in undeformed state (c = rs /re) 

C   hyperelastic parameter defined by (11b) [N/mm2] 
C1, C2   Mooney-Rivlin hyperelastic constants [N/mm2] 
Fa, Fr, Fs, Ftot. axial forces transmitted by air, rubber, sheath 

and whole muscle through cross-section [N] 
l   invariable side of sheath lozenge [mm] 
L    muscle length in undeformed state [mm]  
Lh   invariable length of helical braid [mm] 
n   number of lozenges around muscle circumference 
p   pressure [N/mm2] 
r   radial coordinate [mm]  
rs   sheath radius in undeformed state [mm] 
T   tensile force of single braid [N] (T = T) 
ur   radial displacement component [mm] 
z   axial coordinate [mm] 
α   angle of helical braid 
αcritic   limit value of α for pi → ∞ 
γ*  slope of muscle meridian profile inside end region 
ε   strain component 
ζ  dimensionless axial coordinate inside end region 

(ζ = 1 − 2z /L', ζ = 0 at the mid-span) 
θ   angular coordinate 
λ   stretch component (λ = 1 + ε) 
ρ   square of radii ratio (ρ = r2/re

2)  
σ   stress component [N/mm2] 
ψ, ψmax. angular coordinate and angular half-width of 

lozenge (− ψmax. < ψ < ψmax., see Fig. 2) 
∆z   lozenge axial width inside end regions [mm] 
Θtot.   total winding angle of single braid 
Λ   parameter defined by (7a) 

Subscripts and superscripts 

e, i   external and internal surfaces of rubber sub-layer  
r, θ, z   cylindrical coordinates 
m   binomial exponent of end region approximation 
*   end region values 
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'   values in deformed state 

I. INTRODUCTION 

The pneumatic artificial muscle (PAM) is a simple and 
versatile bio-robotic actuator that can contract under load by 
inflating air into a cylindrical rubber chamber (bladder), 
which is wrapped by a double-helical braid mesh (sheathing): 
the inner bladder expands, reduces the helical slope and 
shortens the device length. The transverse expansion and the 
length decrease are mainly ruled by the geometry of the outer 
mesh, as the elastic elongation of the braids is negligible in 
comparison with the rubber compliance. The PAM's are very 
light and quite practical to replace defective human muscles 
(Fig. 1). Their response is non-linear and actually offers a 
very good simulation of the force-stretch relationship of 
biological muscles. The main PAM drawbacks are the need 
of a compressed air generator and the necessary softness of 
the rubber bladder, which subjects it to breakage danger. 

Gaylord patented the use of the PAM device as an 
actuator [1] and McKibben was the first who applied it for 
orthopaedic purpose in the late fifties, whence it was named 
McKibben actuator. Nonetheless, the further definitive 
diffusion of the PAM's started near the end of the 20th 
century. Following the first theoretical model of Gaylord, 
several researchers analyzed the PAM mechanics for both 
static and dynamic loading histories. Among them, we recall 
the model of Chou and Hannaford [2], which neglected the 
rubber bladder thickness. Similar results were obtained by 
Tondu and Lopez [3] and by Tsagarakis and Caldwell [4], 
who improved the accuracy of the model taking into account 
the loss of the cylindrical shape due to the end effects. These 
and other similar models grounded their validity mainly on 
the empirical choice of some parameters for each single 
device, with the consequent obvious problems for a general 
applicability. The effects of the Coulombian friction among 
the braids was also considered in the analysis of the PAM 
fatigue resistance under repeated loading cycles. Klute and 
Hannaford [5] tried to improve the previous approaches by a 
new model based on the rubber hyperelastic description of 
Mooney and Rivlin [6,7]. Doumit et al. proposed a non-
linear polynomial law for the elastomer response and a cone 
frustum representation of the PAM ends [8]. However, what 
often seems to be lacking in the various models is a 
definitive accordance of their results with the 
experimentation. 

The present analysis considers the combined effects of 
the geometrical deformation of the external sheath and of the 
hyperelastic deformation of the tube material, which is here 
assumed incompressible and is described by a two-parameter 
Mooney-Rivlin law. The shape of the artificial muscle 
surface near the end fixtures is expressed by an algebraic 
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relation among the cylindrical coordinates, whose 
coefficients are fixed by heuristic criteria. The hyperelastic 
constitutive parameters are derived by traction tests on 
rubber specimens. The influence of some possible initial 
clearance between the sheath and the bladder in rest 
conditions is carefully analyzed as well. On the whole, the 
accordance of the theoretical diagrams with experiments 
appears sufficiently acceptable and somehow meets the 
authors' effort to propose a new reliable model based on a 
relatively simple formulation. 

II.  MECHANICAL RESPONSE OF PNEUMATIC MUSCLES 

A. General Theory 

Indicate the undeformed and deformed states without 
superscripts and with primes respectively and the external 
and internal surfaces of the rubber tube with the subscripts e 
and i. Neglect the end effects at first and consider one single 
lozenge formed by the double-helical sheathing together with 
the underlying element of the rubber bladder, as in Fig. 2. All 
the braids are subject to the same tensile force T, lie upon a 
cylindrical surface of radius r'e and are inclined of the same 
angle α' with respect to the cross-section (helical angle). As 
the sheath is very closely woven, the effect of the forces T on 
the rubber is equivalent to a uniform radial pressure pe acting 
on the bladder from the outside. Nevertheless, some attention 
must be paid to the influence of the rubber penetration into 
the interstices among the sheath threads, which may be 
assumed to reduce the effective thickness of the inner 
bladder to a certain fraction of the whole real thickness. 
Here, it is supposed that each element of the mixed rubber-
sheath outer layer, which surrounds and presses the rubber 
effective inner layer, is subject to the only forces T and to the 
radial pressure pe exerted by the rubber inner layer. 

Integrating the elementary pushes of the uniform pressure 
pe throughout the external surface of the rubber element of 
Fig. 2, the radial equilibrium of the rubber-sheath outer layer 
implies that 

4Tcosα'sinψmax. = 2per'elsinα' ∫
ψ
ψ− ψψ.max

.max
cos d  

whence T = pelr' etanα'. As the number of lozenges around a 
cylinder slice of width 2lsinα' is n = πr'e /(lcosα'), the total 
tensile axial force transmitted by the sheath layer through the 
cross-section is Fs = 2nTsinα' = 2πper'e

2tan2α', as may be 
inferred by replacing T and n. On the other hand, the 
compressive force exerted by the air through the cross-
section hole is Fa = − πpir' i

2. 

Indicating the lengths of a single helical braid and of the 
whole pneumatic muscle with Lh and L' respectively (L' = L 

in the undeformed state, where α' = α), one has the self-
evident relations Lh sinα' = L' and Lh cosα' = r'eΘtot., where 
Θtot. is the total winding angle of the braid. Therefore, 
minding that Lh is constant by hypothesis and assuming 
adherence conditions between the sheath and the rubber tube, 
the longitudinal and circumferential stretches of the rubber at 
the outer radius are given by 
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α
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where the subscript e was omitted in the z direction because 
the axial stretch is uniform throughout the cross-section. 
Moreover: r' and r indicate the radial coordinates of a 
generic rubber layer in the deformed spatial state (Eulerian 
reference) and in the undeformed material state (Lagrangian 
reference); c = rs  /re ≥ 1 is a clearance parameter, equal to 
the ratio of the sheath and tube radii in rest conditions; the ε's 
are strain components. Notice that the equilibrium must be 
analyzed using the actual spatial coordinates in the deformed 
state, whereas the stretches must be measured from the 
material undeformed state (λθ = r'/r ). It is worthy of notice 
that, if some initial clearance exists at rest between the sheath 
and the bladder, i. e. c > 1, this clearance may be retrieved 
either by stretching the muscle with zero inner pressure, as 
the cross-section of the tube shrinks much more slowly than 
the radius decrease of the sheath, or by insufflating 
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Figure 2. Element of rubber bladder plus sheath, corresponding to one 
single lozenge. Fe and Fi are the resultant radial forces exerted on the 
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Figure1. Example of pneumatic artificial muscle 



  

compressed air into the muscle and keeping its length 
constant. After the clearance retrieval, one has λθe = (rs 

/re)(r'e /rs) = c cosα'/cosα. Here, it is to be noted that the 
retrieval of some possible clearance is obtained quite soon in 
practical cases, applying an even small load. 

Therefore, the sum of the sheath and air forces may be 
expressed in the form 

Fs + Fa = 




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
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α
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π θ
22
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222
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and, neglecting the bladder influence (re = r i, pe = pi, c = 1, 
λθi = λθe = cosα'/cosα), Equation (2) would return the 
conventional model of Chou and Hannaford [2]. 

The search for the stress and deformation distributions 
inside the bladder requires applying the local equilibrium 
equations and formulating proper constitutive laws for the 
rubber. Considering that the directions r, θ and z of Fig. 2 are 
principal due to the axial symmetry, and indicating the radial 
displacement from the undeformed state with ur, one has 

r

u
rurr r

r =ε→λ=+=′ θθ

dr

du
drdudrrd r

rrr =ε→λ=+=′  
(3a,b)

where the stretches λr = (1 + εr), λθ = (1 + εθ) and λz = (1 + 
εz) are independent of the axial coordinate z and are subject 
to the rubber incompressibility condition 

( )( )( ) 1111 =ε+ε+ε+=λλλ θθ zrzr  (4)

Equations (3a,b) give place to 

rdr
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d r θθ λ−λ=λ
 (5a,b)

while, in the absence of body forces, the radial equilibrium 
equation may be  simply expressed by 
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Thus, we have collected three equations (4, 5b, 6b) in the 
five unknowns λr, λθ, σr, σθ, σz, while λz is given by Eq. (1a) 
and is independent of r. The extra equations needed for the 
closure of the mathematical problem may be written by 
properly specifying the material properties of the rubber. 
Yet, regardless of the rubber constitutive equations, the 
stretch equations (4-5b) can be integrated across the bladder 
thickness. Putting for brevity 
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the integration gives 
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whence λθi
2 = (ρi + Λ)/(ρiλz) and, accounting for (1b) and 

(7a), Equation (2) may be changed into 
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where c = 1 and rs = re for zero initial clearance. 

B. Constitutive Laws of the Rubber Bladder 

As already emphasized, the large deformation of the 
pneumatic muscle requires a careful distinction between 
spatial and material coordinates and involves the choice of a 
non-Hookean definition of the rubber behaviour. Here, a 
Mooney-Rivlin model with the two material constants C1 and 
C2 will be applied relying on its excellent fit with the 
response of many elastomer materials. For incompressible 
solids, such as rubber, one can define the stress-stretch 
relations, apart from a hydrostatic stress, in the form: 
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Transforming (6b) into 
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replacing the right hand of (10a) and using the functions 
λθ(ρ) and λr(ρ) given by (8a,b), it is possible to integrate for 
σr(ρ) and, imposing the boundary condition σr = − pi for ρ = 
ρi, obtain: 
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The two other principal stresses σθ and σz are very easily 
obtained by (10a,b), using (4), (8a,b) and (11a,b): 
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Applying the outer boundary condition, σr = − pe for ρ = 
1, one gets 
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which relation permits calculating pe and T = 
cpelr esinα'/cosα in dependence on pi and on the muscle 
deformation. Moreover, using (3a,b), the force transmitted 
by the rubber tube is given by 

Fr = 2π ∫
′
′ ′′σe

i

r

r z rdr  = ( )∫
ρ

ρσλπ
1

2

i

dr zze  

and, replacing σz by (12b), integrating and adding Fr /πrs
2 to 

Eq. (9), one obtains at last, after some algebra, 
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Equation (14) indicates a linear affine relation between 
Ftot. and pi for fixed helical angle α', i.e. for fixed λz and Λ. 
Moreover, the pressure pi may be seen to diverge for sin2α' = 
1/3 (α'critic ≅ 35°16'), whence the limit axial contraction of 

the muscle is L(1 − λz,min.) = L[1 − 1/( 3 sinα)] and is as 
larger as longer is the muscle and as larger is the initial 
helical angle α. Moreover, replacing the expressions (1a,b) 
into (7a), one observes that α'critic yields also a maximum of 
Λ: 
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The operative conditions of a typical pneumatic muscle 
always involve α' values rather larger than α'critic, whence Λ 
is a decreasing function of α' and, inflating air, α' decreases 
but never reaches the critical value. Notice also that the 
pressure jump pe − pi may be regarded as a function of the 
only stretch λz by (13), where Λ = Λ(α') = Λ(λz). 

The previous results can be simplified in the realistic 
hypotheses of a very thin bladder and c = 1. For t = re − ri → 
0, ρi ≅ 1 − 2t/re, where t is the thickness, and Equations (13) 
and (14) may be changed into simpler approximate 
equations, linear and linear affine in t respectively: 
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C. End Effects 

The following simple model may successfully simulate 
the muscle end shape, after the possible clearance retrieval 
between the sheath and the bladder. Denoting the variables 
with the superscript (…)* in the end regions, the number of 
braids of each helical formation is given by n =πr*/(lcosα*), 
whence the radius r* is proportional to cosα* (r*/rs = 
cosα*/cosα). Assume that the sheath is cylindrical in the 
undeformed state and that the change of the radius r* along a 
meridian section of the deformed muscle may be expressed 
by the binomial law r*(z) = re' −  (re' − rs)(1 − 2z/L')m, where 
m is a suitably large exponent, L' and r' are the muscle length 
and the mid-span radius under load and z = 0 at the 
extremity. Diagrams obtainable for r*(z) and α*(z) turn out to 
be very realistic, with a rapid trend to the mid-span values re' 
and α' provided that m is sufficiently large (see Fig. 3). Of 
course, the choice of m should be based on experimental 
resemblance concepts. 

Indicating the axial extent of each single lozenge with ∆z* 
= 2lsinα*cosγ*, where γ* is given by 
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the axial width of a muscle slice associated with a lozenge 
collar is 
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where ∆z = 2lsinα is the slice axial width in cylindrical 
unloaded conditions (γ* = 0, α* = α). Therefore, letting n → 
∞, ∆z → dz, ∆z* → dz* as the sheath is very densely woven, 
solving with respect to dz, putting ζ = 1 − 2z/L' and 
integrating, one gets 
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Figure 3. End trend of braid helical slope and muscle radius. 
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Fixing the tube geometric parameter 2mrs/L, this equation 
has to be solved for the elongation or contraction ratio L'/L 
for each level of the inflation ratio cosα'/cosα, where α' is 
the braid slope at the mid-span, or also, approximately, 
inside a middle region centred on the mid-span, and is the 
same that was used in the previous sub-sections. This 
calculation may be quickly carried out by some iterative 
procedure and yields the muscle contraction L − L' 
depending on the load and on the air pressure. 

For large diameters of the end fixtures, the PAM mid-
span radius may happen to be smaller than the fixture radius 
in rest conditions. In this case, the radius rs has to be 
replaced by rfixture in the previous binomial law and the 
ensuing formulas must consequently be corrected. 

III  IDENTIFICATION OF CONSTITUTIVE PARAMETERS 

When performing experimental traction tests on prismatic 
rubber specimens, only the stress in the traction direction is 
different from zero, say σz, while the principal stretches on 
the plane orthogonal to z are equal to each other by the 
Cartesian counterpart of (10a) and the incompressibility of 

the rubber implies that λx = λy = 1/ zλ . Putting σz = σ, λz = 

λ = 1 + ε,  the Cartesian form of (10b) gives 









λ
−λ








λ
+=σ 1

2 22
1

C
C  (18)

A rubber specimen of sizes 30×10×0.78 mm (bladder of 
the following section) was subject to axial traction on a test 
machine INSTRON series IX for soft materials in the 
laboratories of the DICGIM of the University of Palermo. 
The strain was firstly increased to the level 50% with a 
slower velocity (1 mm/minute) and then with a much larger 
velocity until its breakage (100 mm/minute). During the test, 
measures of the traction force and of the vice displacement 
were taken with a frequency of 5 pt/s. The stress value was 
obtained from the force taking into account the section 
restriction, which was inversely proportional to the 
elongation due to the material incompressibility. The results 
are shown in the Figures 4a, for the whole test and 4b for the 
slow loading phase. These figures point out the non-linear 
nature of the material response. The two constitutive 
parameters were derived imposing the slope dσ/dε = 6(C1 + 
C2) for ε → 0 and the best fit in the region of interest (ε < 
50%). Processing the numerical data and comparing with Eq. 
(18), the material constants were estimated and rounded to: 
C1 = − 0.05 N/mm2, C2 = 0.5 N/mm2. 

It is noteworthy that the Mooney-Rivlin uniaxial model 
may justify the very rapid retrieval of some possible 
clearance between the bladder and the sheath when loading 
the muscle at zero pressure. Indicating the braid angle with 
αs, the sheath radius contraction is given by λθ,sheath = 

cosαs /cosα, whereas the tube radius shrink is λθ,rubber = 

sz αα=λ sinsin1 . The ratio of these two quantities is 

=λλ θθ rubber,sheath, ( ) ( )αααα 22 cossincossin ss  

and, for fixed α, is a decreasing function of αs, as was 
observed by Eqs. (15a,b), indicating that the sheath 
restriction pursues and reaches quickly the tube restriction. 

IV  EXPERIMENTAL COMPARISON 

The theory of the previous sections was compared with 
some experimental results for a pneumatic artificial muscle, 
as they were reported in a degree thesis of the DEIM of the 
University of Palermo [9]. In rest conditions, the length, 
diameter and thickness of the tube were 120 mm, 22 mm and 
0.78 mm respectively, while the helical angles were 65°. The 
experimental tests had been planned by a gradual increase of 
the internal pressure for several fixed levels of the loading 
force. 

Figure 5 shows, in red, the experimental diagrams of the 
PAM contraction from the zero pressure configuration. As 
observable, some small growth of the pressure is generally 
required before the muscle starts contracting. Then all plots 
show a ramp, which corresponds to the practical operation of 
the PAM, and a final trend to a sort of saturation contraction, 
which corresponds to the previously mentioned critical slope 
αcritic. The contracting behaviour was simulated by the theory 
of the previous sections, taking into consideration the 
hyperelastic properties of the rubber and the end effects, 
ignoring the elongation of the nylon threads and assuming 
that an external fraction of the rubber thickness was merged 
into the sheath (50%, i. e. t ≅ 0.4 mm), due to the rubber 
penetration into the interstices among the threads. In 
particular, the theoretical results were calculated using (14), 
and are shown in light blue in Fig. 5a. An acceptable 
agreement may be observed, save for low loads, with a 
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Figure 4 a,b. Experimental results from traction test on rubber specimen. 
Red dots: Mooney-Rivlin, 2C1 =  −0.1, 2C2 = 1. 
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maximum error of roughly 10% in the main applicative 
region of the curve ramps. This points out the applicability of 
the present model to the PAM design or else to the 
performance prediction of some existing PAM. Figure 5b 
shows, in green, the results by the conventional model of 
references [1,2], which considers the bladder as a membrane 
with zero thickness and may be obtained by Eqs. (16-17) 
imposing t = 0. This model is generally used in literature but, 
as observable, the results are rather far from the experiments 
and moreover, they denote the impossibility of capturing the 
muscle behaviour for very low pressure values, as sinα' 
should have to diverge for pi → 0 and non-zero Ftot., 
differently from the present theory. The results obtainable by 
other much more complex models of the recent past, which 
also take into consideration the thickness and the non-linear 
elasticity of the bladder, should be expected in a rough 
intermediate position between the green and red curves, 
similarly to the experimental-theoretical accordance of the 
tests presented by their authors. 

In parallel, the present theoretical model permits also 
detecting the stress distribution inside the rubber, which may 
be useful to check some possible critical state of the PAM 
working conditions in terms of rubber resistance. As an 
example, Figure 6 shows the diagrams of the outer and inner 
values of the stresses σθ and σz, between whose levels such 
two stresses can be found to vary in a monotonic roughly 
linear manner. Obviously, the radial stress σr varies between 
−pi and −pe. As observable, the overall stress state of the 
cross-section plane is in part compressive and in part 
tractive, depending on the operative conditions, and is 
slightly higher at the inner surface of the tube. 

V CONCLUSION 

The mechanical behaviour of a pneumatic artificial 
muscle may be simulated by a relatively simple theoretical 
model assuming the inextensibility of the external sheathing 
fibres and modelling the inner bladder by a two-parameter 
Mooney-Rivlin material with a properly chosen effective 
thickness. The non-cylindrical muscle shape near the 
extremities may be taken into consideration by simple 

algebraic relations and the changes of the muscle response 
due to some possible initial clearance between the two 
structural components may also be taken into account. The 
analysis includes the estimate of the stress and deformation 
distribution inside the rubber tube, whose mechanical 
resistance has to be considered as the most critical with 
regard to the device breakage. Calculating the constitutive 
parameters of the rubber tube by traction tests, the theoretical 
results can be compared with the experiments, showing a fine 
accordance despite some uncertainty in the determination of 
many physical quantities of the actuator. 
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radius) and axial tension (blue: inner radius; red: outer radius) vs internal 
pressure for various loads. Ftot. = 50, 100, 150 N (other data like in Fig. 4) 
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Ftot. = 30, 60, 90, 120, 150 N. Red: experiments. Light blue: present 
theory. Green: conventional theory (zero thickness rubber membrane) 
Data: α = 65°, C1 = −0.05, C2= 0.5, c = 1, teff. / ttot. = 0.5, m = 6 
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