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Abstract— The mechanical response of pneumatic artificial
muscles is analyzed assuming the inextensibility tfe sheathing
braids and taking into account the stress field ingle the rubber
bladder, which is regarded as a Mooney-Rivlin hypeglastic
material. The end effects are simulated by heuristaly profiling
the meridian section. After estimating the constittive
parameters by ftraction tests on rubber specimens, he
theoretical results are compared with experiments r@d a
satisfactory accordance may be detected.

LIST OF SYMBOLS

c clearance ratio of sheath radius to bladder out
radius in undeformed state € rs/re)

C hyperelastic parameter defined by (11b) [NAhm

C, C,  Mooney-Rivlin hyperelastic constants [N/fim

F.. Fr, Fs Fior. axial forces transmitted by air, rubber, sheat

and whole muscle through cross-section [N]
I invariable side of sheath lozenge [mm]

L muscle length in undeformed state [mm]

Ly, invariable length of helical braid [mm]

n

p pressure [N/mA}

r radial coordinate [mm]

rs sheath radius in undeformed state [mm]

T tensile force of single braid [NJ & OT )

Uy radial displacement component [mm]

z axial coordinate [mm]

a angle of helical braid

Ol critic limit value ofa for p; —» o

y slope of muscle meridian profile inside end regio

€ strain component

4 dimensionless axial coordinate inside end regi
(C=1-2z/L,C =0 at the mid-span)

0 angular coordinate

A stretch componenk (= 1 +¢)

P square of radii ratiop(= r?/rs?)

o] stress component [N/nim

b

lozenge £ Ymax. < W < Ymax, S€€ Fig. 2)

Az lozenge axial width inside end regions [mm]
O, total winding angle of single braid
N parameter defined by (7a)

Subscripts and superscripts

values in deformed state

I. INTRODUCTION

The pneumatic artificial muscle (PAM) is a simpleda
versatile bio-robotic actuator that can contradarmoad by
inflating air into a cylindrical rubber chamber gdter),
which is wrapped by a double-helical braid mesle#shing):
the inner bladder expands, reduces the helicalesknd
shortens the device length. The transverse expaasid the
length decrease are mainly ruled by the geomettiyeobuter
mesh, as the elastic elongation of the braids gdigible in
Eomparison with the rubber compliance. The PAMés\ary
light and quite practical to replace defective homauscles
(Fig. 1). Their response is non-linear and actuaffgrs a
very good simulation of the force-stretch relatiuips of
I6io|ogical muscles. The main PAM drawbacks arertbed
of a compressed air generator and the necessanessfof
the rubber bladder, which subjects it to breakayedr.

Gaylord patented the use of the PAM device as an

number of lozenges around muscle circumferenceactuator [1] and McKibben was the first who appliedor

orthopaedic purpose in the late fifties, whenceds named
McKibben actuator. Nonetheless, the further défiait
diffusion of the PAM's started near the end of
century. Following the first theoretical model ofaord,
several researchers analyzed the PAM mechanicbdtr
static and dynamic loading histories. Among thera,recall
the model of Chou and Hannaford [2], which negledtee
rubber bladder thickness. Similar results were inbth by
Tondu and Lopez [3] and by Tsagarakis and Caldj4|l
who improved the accuracy of the model taking extocount
oihe loss of the cylindrical shape due to the effieced. These
and other similar models grounded their validityimhaon
the empirical choice of some parameters for eaollesi
device, with the consequent obvious problems fgewmeral
applicability. The effects of the Coulombian frami among
the braids was also considered in the analysi©®fRAM
fatigue resistance under repeated loading cyclagekand

» Umax, angular coordinate and angular half-width ol4annaford [5] tried to improve the previous appteeby a

new model based on the rubber hyperelastic dewurif
Mooney and Rivlin [6,7]. Doumit et al. proposed ann
linear polynomial law for the elastomer response arcone
frustum representation of the PAM ends [8]. Howevdrat
often seems to be lacking in the various modelsais
accordance of their results with the

The present analysis considers the combined effifcts

i ) definitive
g i external and internal surfaces of rubber sub-layer experimentation.
r,0,z cylindrical coordinates
m binomial exponent of end region approximation
*

end region values
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the geometrical deformation of the external sheatt of the
hyperelastic deformation of the tube material, Whig here
assumed incompressible and is described by a twarder
Mooney-Rivlin law. The shape of the artificial miesc
surface near the end fixtures is expressed by @ebedic



Fe= 4pe|rle5im‘ Sinq»'max.

Figurel. Example of pneumatic artificial muscle t (bladder thicknes)
relation among the cylindrical coordinates, whose
coefficients are fixed by heuristic criteria. Thephrelastic
constitutive parameters are derived by tractiortstem
rubber specimens. The influence of some possihtalin
clearance between the sheath and the bladder in res;
conditions is carefully analyzed as well. On theoleh the ‘
accordance of the theoretical diagrams with expeamims
appears sufficiently acceptable and somehow mdas t
authors' effort to propose a new reliable modektasn a
relatively simple formulation. | (lozenge side)
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Il. MECHANICAL RESPONSE OPNEUMATIC MUSCLES

A. General Theory (2Tcosa"

Indicate the undeformed and deformed states without
superscripts and with primes respectively and tktereal
and internal surfaces of the rubber tube with thessriptse
andi. Neglect the end effects at first and consider gingle Figure 2. Element of rubber bladder plus sheathiesponding to one
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![cr)éel:]r?gefrcl);mgde Il?r/n tgr?t %??ﬁée;gsggflbﬁgggg'”%t_g?;e"’gn si?]gle lozengeF. andF; are the resultre)int radial fOI‘CZS exergt]ed on the

. . - ) ETIe e external and internal curved surfaces of the rublmment
the braids are subject to the same tensile férd upon a
cylindrical surface of radius, and are inclined of the samein the undeformed state, whete = a), one has the self-
anglea’ with respect to the cross-section (helical anghs) evident relationd, sina' = L' and L, coa' = r'¢®y, Where
the sheath is very closely woven, the effect offttreesT on @, is the total winding angle of the braid. Therefore
the rubber is equivalent to a uniform radial presgdacting minding thatL, is constant by hypothesis and assuming
on the bladder from the outside. Nevertheless, saiteation adherence conditions between the sheath and therrtitbe,
must be paid to the influence of the rubber petietranto  the longitudinal and circumferential stretcheshef tubber at
the interstices among the sheath threads, which beay the outer radius are given by
assumed to reduce the effective thickness of theerin

symmetry axes

bladder to a certain fraction of the whole reakkhiess. A, = £:1+s _sina’

Here, it is supposed that each element of the minbder- CL Z sina

sheath outer layer, which surrounds and pressesutiteer , , (1a,b
effective inner layer, is subject to the only fa@eand to the Moo = Te _q4e = 0O

radial pressure, exerted by the rubber inner layer. (R e cosa

Integrating the elementary pushes of the uniforesgure \yhere the subscrig was omitted in the direction because
Pe throughout the external surface of the rubber efero€ the axial stretch is uniform throughout the crosstisn.
Fig. 2, the radial equilibrium of the rubber-sheattter layer \Moreover: r' and r indicate the radial coordinates of a

implies that generic rubber layer in the deformed spatial stEtderian
ATco'si = 20.r' Isina’ Y™ coswd reference) and in the undeformed material statgréragian
Mmax. = 20e"e J._wmax spdy reference)c = rs Ire > 1 is a clearance parameter, equal to

whenceT = pdr' tam'. As the number of lozenges around dhe ratio of the sheath and tube radii in rest d@; thee's

cylinder slice of width Bina' is n = 1’ /(Icos’), the total are strain components. Notice that the equilibrimust be
tensile axial force transmitted by the sheath lalgesugh the analyzed using the actual spatial coordinateserdtformed
cross-section i€ = 2nTsina' = 2mpe'Atarfa’, as may be State, whereas the stretches must be measured tirem
inferred by replacingT and n. On the other hand, the Material undeformed statde(= r'/r). It is worthy of notice
compressive force exerted by the air through thesssr that, if some initial clearance exists at rest lsetwthe sheath
section hole i§, = - o' and the bladder, i. & > 1, this clearance may be retrieved
o ) _ _ either by stretching the muscle with zero innerspuee, as
Indicating the lengths of a single helical braidiar the the cross-section of the tube shrinks much monelglthan
whole pneumatic muscle with, andL' respectively ' =L the radius decrease of the sheath, or by insuffati



compressed air into the muscle and keeping itsthengwhencelg® = (o + A)/(piA,) and, accounting for (1b) and

constant. After the clearance retrieval, one hgas= (rs
Ire)(r'e Irg) = ¢ cosn'/cosu. Here, it is to be noted that the
retrieval of some possible clearance is obtainétd goon in
practical cases, applying an even small load.

Therefore, the sum of the sheath and air forces Ineay
expressed in the form
P riz)‘%ij

FS+Fa=r{

and, neglecting the bladder influeneg=£r;, p. = pi, ¢ = 1,
Asi = Age = co®'/cosn), Equation (2) would return the
conventional model of Chou and Hannaford [2].

2ptic’sina’
cos a

)

The search for the stress and deformation distabsit
inside the bladder requires applying the local ldgiiim
equations and formulating proper constitutive ldas the
rubber. Considering that the directian® andz of Fig. 2 are
principal due to the axial symmetry, and indicatihg radial
displacement from the undeformed state wijtlone has
ur

r
_du.

dr
where the stretcheg = (1 +¢,), Ag = (1 +&9 andA, = (1 +

€,) are independent of the axial coordinatend are subject
to the rubber incompressibility condition

r'=r+u, =Agf -

€9 =
(3a,b
dr' =dr+du, =A.dr

-

&

e, =1+, )L+ gg)(L+e,) =1 ()
Equations (3a,b) give place to
%:—sr “ &g %:—)\r_)\e (5a,b
dr r dr r '

while, in the absence of body forces, the radialilggium
equation may be simply expressed by

do, _[Ac

dr Ag

Thus, we have collected three equations (4, 5bjr6the
five unknowns\,, Ag, G,, Og, G, While A, is given by Eq. (1a)

do, _0¢—0;

dr' r'

Og — 0,

6a,b
: (

and is independent aof The extra equations needed for the

closure of the mathematical problem may be writtgn
properly specifying the material properties of théber.
Yet, regardless of the rubber constitutive equatiothe
stretch equations (4-5b) can be integrated actessladder

thickness. Putting for brevity
2 r2 r
N=NXeeA,=1 p=— p=-5 (7a,b,c
re re
the integration gives
N 1 p
=PI ang 2= = P 8a,b
pA, TN hern] €D

(7a), Equation (2) may be changed into

Fo+F, _2psin®a’-pcoga’  p

w2 cosa A

iz(l_pi)
c

(9)

z

wherec = 1 andrs = r, for zero initial clearance.

B. Constitutive Laws of the Rubber Bladder

As already emphasized, the large deformation of the
pneumatic muscle requires a careful distinctionwben
spatial and material coordinates and involves ti@ce of a
non-Hookean definition of the rubber behaviour. ¢{ea
Mooney-Rivlin model with the two material consta@tsand
C, will be applied relying on its excellent fit witthe
response of many elastomer materials. For incorsjimes
solids, such as rubber, one can define the sttestsis
relations, apart from a hydrostatic stress, inféinm:

1 1
06 -0, = 2C, (M 22 )+ ZCZ()\_Z_)\_ZJ
roe (10a,b
1

i)

20,0 -M)e 20 -
)\I’ z
Transforming (6b) into
do, _ Og— O,
dp 2p

replacing the right hand of (10a) and using thecfioms
Ao(p) andA,(p) given by (8a,b), it is possible to integrate for
o,(p) and, imposing the boundary condition= —p; for p =

pi, obtain:

Ar
Ag

A
A A s
o, =-p+C - =In &
/\+pi /\+p 1+A
P (11a,b)
C= Cl+CZ}\2Z

A,
The two other principal stresseg andag, are very easily

obtained by (10a,b), using (4), (8a,b) and (11a,b):

Og =0, + ZC(M _Lj
P pt+A
(12a,9
O.Z =0r +2(Clp)\z +C2j (p+/\))\z _iz
ptA P A
Applying the outer boundary conditioa, = — p, for p =
1, one gets
A A 1+A
_ Pi
-p=C - - 13
Pe~ P A+1 A+p, TiA (13



which relation permits calculatingpe and T
cpdresina’/cost in dependence o, and on the muscle
deformation. Moreover, using (3a,b), the force $raitted
by the rubber tube is given by

1
/n,)]o.dp

Pi
and, replacingy, by (12b), integrating and addirfg /7rs’ to
Eqg. (9), one obtains at last, after some algebra,

F, = 2r[jrri,eozr’dr’ = (T[re2

Fo. - FstFatF _ 0 3sin“a’ -1 .
Tl 2 ' cofa
1+
2\%Ctan’ o AN ™ P T
(A+1) (A+p) 1+A
> {(C+2C2/\)\Z)In pi — 14
ALC
clen +1)——ch/\ In[—/\ b ]—
A, A+1
CA 1
[—(/\ﬂ)i) +2(CA, +C2)[)\z Eﬂ(l Pi )}

Equation (14) indicates a linear affine relatiorivieen
Fit. andp; for fixed helical anglex', i.e. for fixedA, andA.
Moreover, the pressugg may be seen to diverge for &in=
1/3 (@'aiic O 35°16"), whence the limit axial contraction o

the muscle iL(1 = A,min) = L[1 - 1/(\/§ sina)] and is as
larger as longer is the muscle and as larger isirthial
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Figure 3. End trend of braid helical slope and rfeusadius.
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C. End Effects

The following simple model may successfully simelat
the muscle end shape, after the possible cleanatiGeval
between the sheath and the bladder. Denoting thablas
with the superscript (...)in the end regions, the number of
braids of each helical formation is given by=1r /(Icos’),
whence the radiug™ is proportional to cas (r'/rs =
cosu /cosn). Assume that the sheath is cylindrical in the
undeformed state and that the change of the radalsng a
fmeridian section of the deformed muscle may be esged
by the binomial law’ (2) = re — (fe —rJ)(1 —2z/L)™, where
mis a suitably large exponeiht,andr' are the muscle length
and the mid-span radius under load and= 0 at the

helical anglea. Moreover, replacing the expressions aa,béxtremity. Diagrams obtainable foz) anda’(2) turn out to

into (7a), one observes that,. yields also a maximum of
N:

A=c? sina’cosa’

dA _ , cosa’(1- 3sin® o)
sina cos o -¢

1 Ed
da sina co< o

(15a,H
The operative conditions of a typical pneumatic ceis
always involvea' values rather larger thar., whenceA\

is a decreasing function of and, inflating aira’ decreases
but never reaches the critical value. Notice alsat the
pressure jummp. — p May be regarded as a function of th
only stretch, by (13), where\ = A(a") = A(A).

The previous results can be simplified in the stigli
hypotheses of a very thin bladder and 1. Fort =r, —r; -

0, pi 01 - 2t/re, wheret is the thickness, and Equations (13)
into simpler approximate

and (14) may be changed
equations, linear and linear affinetirespectively:

J

1

R (19

t
Pe—B = -2C—

-

e

be very realistic, with a rapid trend to the miduwsvalues,
anda' provided thatm is sufficiently large (see Fig. 3). Of
course, the choice ah should be based on experimental
resemblance concepts.

Indicating the axial extent of each single lozenith Az
= 2Isina’cos/, wherey is given by
. 2z
tany =——=— -—

m-1
re—re)l 1
=
e

the axial width of a muscle slice associated witlbzenge

collar is
Vi-cog a’
sinoy/1+tan? y"-

where Az = 2lsina is the slice axial width in cylindrical
unloaded conditionsy( = 0,a” = a). Therefore, lettingy —

w, Az - dz, Az - dZ as the sheath is very densely woven,
solving with respect todz putting = 1 - 2z/L' and
integrating, one gets

dr”  2m

*

Az = Az
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Fixing the tube geometric parametenrdL, this equation
has to be solved for the elongation or contractatio L'/L
for each level of the inflation ratio cm'écosi, wherea' is
the braid slope at the mid-span, or also, appraeina
inside a middle region centred on the mid-span, ianithe

same that was used in the previous sub-sectiongs Th

calculation may be quickly carried out by some atize
procedure and yields the muscle contractibn — L'
depending on the load and on the air pressure.

For large diameters of the end fixtures, the PAMI-mi
span radius may happen to be smaller than therdéixtadius
in rest conditions. In this case, the radiyshas to be

replaced byrsgre IN the previous binomial law and the

ensuing formulas must consequently be corrected.

[Il IDENTIFICATION OF CONSTITUTIVE PARAMETERS

When performing experimental traction tests onrpaitic
rubber specimens, only the stress in the tracticection is

different from zero, sap,, while the principal stretches on
the plane orthogonal ta are equal to each other by the

Cartesian counterpart of (10a) and the incompriisgibf
the rubber implies that, = A, = 1/4/A, . Puttinga, = g, A, =
A =1 +¢, the Cartesian form of (10b) gives

ofer -}

A rubber specimen of sizes 800x0.78 mm (bladder of
the following section) was subject to axial trantion a test
machine
laboratories of the DICGIM of the University of Baho.
The strain was firstly increased to the level 50%hva
slower velocity (1 mm/minute) and then with a muatger
velocity until its breakage (100 mm/minute). Durithg test,
measures of the traction force and of the viceldgment
were taken with a frequency of 5 pt/s. The stredaeswas
obtained from the force taking into account thetisac
restriction, which was inversely proportional toeth
elongation due to the material incompressibilitheTresults
are shown in the Figures 4a, for the whole test4mébr the
slow loading phase. These figures point out the-limmar
nature of the material response. The two constiuti
parameters were derived imposing the sldpkle = 6(C; +
C,) for € » 0 and the best fit in the region of interesst<(
50%). Processing the numerical data and comparitigEa.
(18), the material constants were estimated anddexd to:
C, =-0.05 N/mnf, C, = 0.5 N/mm.

It is noteworthy that the Mooney-Rivlin uniaxial ohel
may justify the very rapid retrieval of some possib
clearance between the bladder and the sheath wiheing
the muscle at zero pressure. Indicating the bragleawith
05 the sheath radius contraction is given Bysheath =

(18

INSTRON series IX for soft materials in th

(@)

3
elongation (L-LO)/LO

(b)

01 02

elongation (L-LO)/LO

03 03

Figure 4 a,b. Experimental results from tracticst s rubber specimen.
Red dots: Mooney-Rivlin,@, = -0.1, 2, = 1.

cosi /cosn, whereas the tube radius shrink g upper =
1/\/)\2 =,/sina/sinag . The ratio of these two quantities is

Ao sheaty N6 rubber = \/(sina scof ay)/(sinacoda)

and, for fixeda, is a decreasing function af,, as was
observed by Eqgs. (15a,b), indicating that the s$heat
restriction pursues and reaches quickly the tubticgon.

IV EXPERIMENTAL COMPARISON

The theory of the previous sections was compared wi
some experimental results for a pneumatic artifigiascle,
as they were reported in a degree thesis of thaVDdfIthe
%niversity of Palermo [9]. In rest conditions, thength,
diameter and thickness of the tube were 120 mnmi22and
0.78 mm respectively, while the helical angles wes& The
experimental tests had been planned by a graduadse of
the internal pressure for several fixed levelstaf toading
force.

Figure 5 shows, in red, the experimental diagrahthe
PAM contraction from the zero pressure configuratiés
observable, some small growth of the pressure nergdy
required before the muscle starts contracting. Tdlkeplots
show a ramp, which corresponds to the practicataijom of
the PAM, and a final trend to a sort of saturationtraction,
which corresponds to the previously mentionedaaitslope
Oqiic- The contracting behaviour was simulated by tleeth
of the previous sections, taking into consideratitre
hyperelastic properties of the rubber and the eifiects,
ignoring the elongation of the nylon threads ansuasng
that an external fraction of the rubber thickness werged
into the sheath (50%, i. ¢.00 0.4 mm), due to the rubber
penetration into the interstices among the thredds.
particular, the theoretical results were calculaisthg (14),
and are shown in light blue in Fig. 5a. An accelatab
agreement may be observed, save for low loads, @ith
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Figure 5 a,b. Plots of contraction vs internal pues for various loads: internal pressure (bar)

Fiot. = 30, 60, 90, 120, 150 N. Red: experiments. Lighteblpresent
theory. Green: conventional theory (zero thickrmresber membrane)
Data:a = 65°,C;=-0.05,C,= 0.5,c = 1, tefr. / tior. = 0.5,m=6

Figure 6. Plots of circumferential tension (blaler radius; green: outer
radius) and axial tension (blue: inner radius; mder radius) vs internal
pressure for various loadS,:. = 50, 100, 150 N (other data like in Fig. 4)

maximum error of roughly 10% in the main applicativ algebraic relations and the changes of the mussponse
region of the curve ramps. This points out the igppility of  due to some possible initial clearance between tite
the present model to the PAM design or else to thg@ructural components may also be taken into adcdiire
performance prediction of some existing PAM. Figlitt analysis includes the estimate of the stress afatrdation
shows, in green, the results by the conventionalehof (ijstribution inside the rubber tube, whose mechanic
references [1,2], which considers the bladder eembrane (esistance has to be considered as the most Etritita
with zero thickness and may be obtained by Eqs:16 regard to the device breakage. Calculating the titotige
imposingt = 0. This model is generally used in literaturé, bu harameters of the rubber tube by traction teststihoretical
as observable, the results are rather far fronexiperiments oqits can be compared with the experiments, stpavifine
and moreover, they denote the impossibility of epg the  5cordance despite some uncertainty in the detatiomof
muscle behaviour for very low pressure values, iag's many physical quantities of the actuator.

should have to diverge fop, — 0 and non-zeroF,
differently from the present theory. The resulttagiable by
other much more complex models of the recent pasth .
also take into consideration the thickness anchtielinear ~ The authors are grateful to Prof. F. D'lppolito tbe
elasticity of the bladder, should be expected imoagh DEIM, University of Palermo, Italy, for providingném with
intermediate position between the green and redesur experimental results.

similarly to the experimental-theoretical accordaraf the
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