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Abstract The destabilizing influence of the internal
friction on the supercritical rotor whirl can be effi-
ciently counterbalanced by other external dissipative
sources and/or anisotropic suspension systems. The
theoretical approach may take the internal dissipation
into consideration either by dry or viscous models.
Nevertheless, several numerical results and a new per-
turbation technique of the averaging type prove that
similar rotor motions and stability limits are achiev-
able by both models, whence the linear viscous as-
sumption appears preferable. Thus, the internal hys-
teretic force may be expressed by the product of an
equivalent viscous coefficient and the rotor centre ve-
locity relative to a reference frame rotating with the
shaft end sections. After calculating the natural fre-
quencies and the response to dynamic imbalances,
the stability of the steady motion is checked by the
Routh-Hurwitz criterion, focusing the analysis on the
individual influence of several characteristic proper-
ties, like the gyro structure, the stiffness anisotropy
of the supports and their asymmetry, and searching
for the external damping level needed for stability.
A fairly interesting result is that the benefit of the
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suspension anisotropy is most effective for a symmet-
ric rotor mounted at the shaft mid-span and decreases
significantly on increasing the configuration asymme-
try, even moderately. It is also observed how the stabil-
ity may somehow be associated with the coupling be-
tween progressive and retrograde precession motions.
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1 Introduction

There are several sources of internal dissipation in
a rotor-shaft-bearing system, the most important of
which are identifiable with the shaft own hysteresis
and the possible shrink fit relaxation. As well known,
the internal friction may exert a destabilizing influence
in the speed range above the first critical speed, whose
consequences may become important in some applica-
tions, such as in long light drive-shafts where the hys-
teretic properties of the material, e.g. carbon/epoxy,
are more remarkable than in common metallic materi-
als (see [1]). In despite of this, the unstable hysteretic
trend can be efficiently counterbalanced by other ex-
ternal dissipative sources that may be present in the
installation. For example, recent researches of the au-
thors show that, suspending the journal boxes elasti-
cally and providing them of dry friction surfaces nor-
mal to the shaft axis, which rub against the frame,
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a strong damping action can be exerted on the hys-
teretic motions, apart from achieving also an excellent
contrast to the critical flexural speeds [2–5].

Many researchers have been involved in these prob-
lems in the past, dating from the first approaches of
Refs. [6–8]. Among the numerous papers, Ref. [9] re-
ports a valuable stability analysis of a rotor mounted
on a hysteretic shaft at equal distance from the bear-
ings, where the stability threshold is searched by the
Routh-Hurwitz criterion depending on various system
parameters. Many other analyses develop fairly in-
depth formulations, where also the system asymme-
try, the gyroscopic effects and the anisotropy of the
supports are taken into consideration, but they gener-
ally address single isolated example cases and do not
cover wide operating ranges [10–21]. In other papers,
the main focus is on the particular damping proper-
ties of the supports, characterized for example by hy-
drostatic bearings [22] or by polymeric viscoelastic
suspensions, whose constitutive laws are to be opti-
mized in the speed domain according to some stabi-
lization requirements [23, 24]. Approaches in terms
of finite elements are also widely present in litera-
ture (e.g. [25, 26]), together with more general well-
grounded theoretical formulations taking into consid-
eration various possible aspects [27, 28]. Nevertheless,
what is missing in literature is a systematic analysis
of the individual influences of the geometric, inertial
and dissipative properties of the rotating system on the
stability threshold and in particular the study of the re-
markable decay of the system stability on moving the
rotor away from the shaft mid-span.

The present analysis, which develops the prelim-
inary results of Ref. [29], aims at this investigation,
dealing with all the above effects and broadly address-
ing the conical whirling motions of an asymmetric un-
balanced rotor-support assembly subject to gyroscopic
effects, with different suspension stiffness and damp-
ing coefficients in the horizontal and vertical planes.
The unbalance is considered both as static (eccentric-
ity of the mass centre) and dynamic (skewness of the
principal axes of inertia).

After deriving the Campbell diagrams and the el-
liptical paths of the rotor and the bearings by stan-
dard procedures, the stability of the steady motion is
checked by the Routh-Hurwitz method and a thorough
investigation is carried out on the particular influence
of the gyro structure, of the stiffness anisotropy of
the supports and of the system asymmetry. Differently

from many previous approaches, the objective is not so
much the limit speed of stability, as the level of exter-
nal damping needed to prevent unstable conditions in
the whole speed range. The instability phenomena can
be conveniently prevented by differentiating the sus-
pension stiffness in the horizontal and vertical planes,
or in two orthogonal inflexion planes in general, which
confirms the results of previous researches, but high-
lighting the strong influence of the rotor position along
the shaft and of the other characteristics.

A very simple theoretical relation between the hys-
teresis factor and the elastic constants is calculable at
the stability threshold of symmetric systems and it is
possible to show how the beneficial stabilizing effect
of anisotropy may be somehow associated with the
coupling between progressive and retrograde preces-
sion motions.

The internal dissipation may be modelled either by
viscous or by Coulombian friction depending mainly
on the significance of the shaft hysteresis or of the
shrink fit slackening. The non-linear friction case may
be dealt with by numerical procedures or by perturba-
tion approaches, e.g. of the Krylov-Bogoliubov type.
However, it is provable that the stability conditions are
just slightly influenced by the choice of the one or the
other model for low friction levels, provided that some
proper equivalence is defined for the two respective
coefficients. On the other hand, the hysteretic coef-
ficient may be considered as a function of the rela-
tive angular speed with respect to the shaft end sec-
tions, either of the equilibrium deflection or of the sin-
gle precession motions, but this choice turns out to
be irrelevant as regards the absolute stability threshold
throughout the whole speed range.

2 Mathematical scheme

Figure 1 shows the rotor-suspension system and may
be used as a reference for the notation. The approach
is classical and similar to Refs. [2–5, 30]. The rotor
is subject to a static unbalance, specified by the lo-
cation of the mass centre C at some fixed eccentric-
ity e from the intersection O1 of the shaft axis with
the rotor diametral plane, and to a dynamic unbal-
ance, which may be schematized by two equal ficti-
tious point masses md , symmetric with respect to O1,
lying on a meridian plane which does not contain C in
general. The masses of the support are neglected.
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Fig. 1 Scheme of rotating machine. Detail: reference system rotating with driving end section

The frame Cxyz moves with C remaining parallel
to the fixed frame Ox0y0z0, while the frame Cξηζ is
obtainable by another auxiliary frame fixed to the ro-
tor, through a backward rotation of the diametral axes
ξ and η around ζ of an angle equal to the rotor rotation
θ = ωt . Then, the reference Cξηζ does not partake in
the main rotating motion with angular speed ω, but
performs only the small rotations ϕ and ψ around the
axes x and y due to the shaft deflection. Furthermore,
the shaft is supposed horizontal and the gravitational
field g is assumed directed towards −y0.

The torsional deformation between the rotor and
the end sections is ignored, as the torsional motion is
uncoupled with the bending motion within the linear
approximation.

The differentiation with respect to the dimension-
less angular time variable θ = ωt is indicated with
primes, whence d(. . .)/dt = ω(. . .)′, etc. Moreover,
defining a reference shaft stiffness k0 (k0 = 48EI/l3

for two self-aligning bearings, or k0 = 192EI/l3 for
two cylindrical bearings, or k0 = 3EI/l3 for a can-
tilever shaft, where EI is the flexural stiffness and l

the shaft length) and a reference critical speed ωc =√
k0/m, the angular speed ratio Ω = ω/ωc may be

introduced, together with the dimensionless stiffness
ratios, K3x = k3x/k0, K3y = k3y/k0, K4x = k4x/k0

and K4y = k4y/k0, assuming different support stiff-
ness in the horizontal and vertical planes. As regards
the self-weight effects, the dimensionless gravity pa-
rameter Γ = mg/(ek0) is introduced.

Some external environmental dissipation is sup-
posed to act on the rotor translational and rotational
motions and the correspondent resistances are as-
sumed viscous-like and linear for simplicity, whence
the viscous equivalent coefficients c1 [kg s−1] and c2

[kg m2 s−1] are introduced, together with the damp-
ing factors d1 = 0.5c1ωc/k0 and d2 = 0.5c2ωc/(k0l

2).
Similarly, the damping factors d3x = 0.5c3xωc/k0,
d3y = 0.5c3yωc/k0, d4x = 0.5c4xωc/k0, d4y =
0.5c4yωc/k0, are ascribed to the horizontal and ver-
tical damping of the suspension system, where the
c’s stand for viscous damping coefficients of the sup-
ports.

Similarly to [2–5], the shaft is considered mass-
less, elastic and hysteretic, and the internal dissipa-
tive force acting on the rotor is assumed opposite
to the velocity vrel. of point O1 relative to a refer-
ence system O3ξ0η0ζ0 having the coordinate axis ζ0

through the centres of the shaft end sections and ro-
tating with the driving end section at the same angu-
lar speed ω (see detail of Fig. 1). In the case of two
supports, indicating with L3 = −z3/l and L4 = z4/l

the dimensionless distances of the rotor from the shaft
ends, the components of vrel. in the fixed reference
Ox0y0z0 are vrel.,x = ẋ1 − ẋ3L4 − ẋ4L3 + ω(y1 −
y3L4 −y4L3) and vrel.,y = ẏ1 − ẏ3L4 − ẏ4L3 −ω(x1 −
x3L4 − x4L3), while for a cantilever shaft clamped
at 3 and loaded at 4, they are vrel.,x = ẋ1 − ẋ3 +
ω(y1 − y3) and vrel.,y = ẏ1 − ẏ3 − ω(x1 − x3). In
the hypothesis of viscous-like friction, the hystere-
sis force may be expressed by use of a hysteretic
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coefficient ch, Fh = −chvrel., and the forces on the
supports are F3h = −L4Fh, F4h = −L3Fh, or else
F3h = −Fh for a cantilever shaft. Assuming Coulomb
friction, a different model must be applied: Fh =
−Fh,dryvrel./|vrel.|, where Fh,dry is the friction force
level.

Considering the steady rotation of a perfectly bal-
anced horizontal rotor, the shaft deflection plane is
motionless and counter-rotates with opposite angu-
lar speed with respect to the mobile frame O3ξ0η0ζ0.
Therefore, point O1 describes a circular path in this
frame and the hysteretic work per single revolution
is given by the integral ch

∮
(v2

rel.,x + v2
rel.,y)dt =

chω
∮ [(y1 − L4y3 − L3y4)

2 + (−x1 + L4x3 +
L3x4)

2]dθ , where xj and yj are equilibrium values.
Assuming that this cyclic work is proportional to the
square of the path radius and independent of ω, the
product chω turns out to be constant and a constant
hysteresis factor dh = 0.5chω/k0 may be introduced
(see [31]).

The presence of some unbalance induces a fur-
ther rotating bending with the same angular speed of
the shaft and, in the case of isotropic stiffness and
damping of the supports (K3x = K3y , K4x = K4y ,
d3x = d3y , d4x = d4y ), this motion is circularly po-
larized, rigid with the frame O3ξ0η0ζ0 and uninfluen-
tial on the overall friction work. For anisotropic sus-
pension on the contrary, the trajectories are ellipti-
cal and passing from the fixed to the rotating frame
O3ξ0η0ζ0, they exhibit double looped shapes and are
covered by twice the shaft frequency (2ω), because the
radius vector is subject to increasing and decreasing
phases twice during one full revolution of the rotating
frame.

Following [31], the two mentioned dissipative cy-
cles must be dealt with separately and two different
hysteresis coefficients ch must be defined, the one,
ch1, for the frequency ω and the other, ch2, for the
double frequency 2ω. As it is reasonable to assume

that ωch1 = 2ωch2 = h [31], where h is a hysteresis
constant of the material, two hysteresis factors must
be introduced, dh1 = 0.5h/k0 for the relative rota-
tion of the equilibrium deflection plane and dh2 =
0.25h/k0 = dh1/2 for the elliptical motions due to the
unbalance. When applying some perturbation proce-
dure to check the system stability, very small devi-
ations of the perturbed trajectories from the steady
paths are to be assumed and the factor dhi may be
kept unmodified. The use of the first or the second
hysteresis factor in the stability analysis will depend
on the prevalence of the gravity or the unbalance ef-
fect on the rotor response, Γ = mg/(ek0) > 1 or Γ =
mg/(ek0) < 1.

If the dry friction internal dissipation has to be re-
garded as predominant in the system, the work per

cycle is Fh,dry
∮ √

v2
rel.,x + v2

rel.,ydt and a dry damp-

ing factor must be defined: dh,dry = Fh,dry/(k0e). The
equivalence between dry and viscous friction can be
stated and checked on the basis of the same energy
dissipation during a sufficiently large number of rev-
olutions and the parameters dh,dry and dh can be thus
correlated with each other.

It is convenient to scale all displacements by the
rotor eccentricity e and all rotations by e/l and, using
capital letters for dimensionless quantities, introduce
the dimensionless displacement-rotation vectors, X =
{X1,X2,X3,X4}T , Y = {Y1, Y2, Y3, Y4}T , where, us-
ing the subscripts 1, 3, 4 for the displacements of the
rotor and the support and 2 for the rotor tilt around y

and x, Xj = xj /e, Yj = yj/e, for j �= 2, X2 = ψl/e,
Y2 = −ϕl/e (the minus sign in the definition of Y2 per-
mits using the same form of the stiffness matrix for
both the bending planes, xz and yz).

Scaling all forces and moments by k0e and k0el re-
spectively, introducing the dimensionless stiffness ma-
trices Kjz in the inflexion planes xz (j = x) and yz

(j = y), e.g.

Kjz = 1

16L3
3L

3
4

⎡

⎢
⎢
⎢
⎣

1 − 3L3L4 L3L4(L3 − L4) −L3
4 −L3

3

L3L4(L3 − L4) L2
3L

2
4 L3L

3
4 −L4L

3
3

−L3
4 L3L

3
4 16L3

3L
3
4K3j + L3

4 0

−L3
3 −L4L

3
3 0 16L3

3L
3
4K4j + L3

3

⎤

⎥
⎥
⎥
⎦

(1)
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for self-aligning bearings, and the hysteretic matrices
Hi for i = 1 or 2 (frequency ω or 2ω)

Hi = dhi

⎡

⎢
⎢
⎢
⎣

1 0 −L4 −L3

0 0 0 0
−L4 0 L2

4 L3L4

−L3 0 L3L4 L2
3

⎤

⎥
⎥
⎥
⎦

(2)

the equations of motion can be written in the form

KxzX + 2ΩDxzX′ + 2Hi

(
X′ + Y

)+ Ω2MX′′

+ Ω2GY′ −

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ω2 cos θ

−MdΩ2 cos(θ − γ )

0
0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= 0 (3a)

KyzY + 2ΩDyzY′ + 2Hi

(
Y′ − X

)+ Ω2MY′′

− Ω2GX′ −

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ω2 sin θ − Γ

−MdΩ2 sin(θ − γ )

0
0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= 0 (3b)

where Md = 0.5mdsrdr/elm is the dynamic unbal-
ance parameter, sr and dr being the axial size and
the diameter of the rotor (see Fig. 1), and γ is the
angle between the meridian planes through C and
through the point masses md . Moreover, Jd = jd/ml2

and Ja = ja/ml2 are the dimensionless diametral and
axial moment of inertia of the rotor, scaled by the
product ml2, jd and ja being the real moment of
inertia, evaluated in the absence of dynamic unbal-
ance, and the matrices Djz (j = x, y), M and G of
Eqs. (3a) and (3b) are diagonal and are the viscous,
massive and gyroscopic matrices, whose coefficients
are (d1, d2, d3j , d4j ), (1, Jd,0,0) and (0, Ja,0,0) re-
spectively.

Here, the first, third and fourth equations of (3a)
and (3b) were made dimensionless dividing by ke

(force equations), while the second equations were di-
vided by kel (moment equations).

3 General results

The equilibrium configuration is obtained rewriting
Eqs. (3a) and (3b) in the form KxzXeq. +2H1Yeq. = 0,
KyzYeq. − 2H1Xeq. = −Γ {1,0,0,0}T . This algebraic
system leads to the solution, Xeq. = 2AxzH1(Kyz +
4H1AxzH1)

−1Γ {1,0,0,0}T , Yeq. = −(Kyz +
4H1AxzH1)

−1Γ {1,0,0,0}T , where Ajz = K−1
jz are

the flexibility matrices, and introducing the 2×2 shaft
flexibility sub-matrix [A0] (fixed supports)

A0 = 16

[
L2

3L
2
4 L3L4(L4 − L3)

L3L4(L4 − L3) 1 − 3L3L4

]

the solution is

Xeq. = 2dh1Γ A0,11

1 + 4d2
h1A

2
0,11

⎧
⎪⎪⎨

⎪⎪⎩

A0,11

A0,21

0
0

⎫
⎪⎪⎬

⎪⎪⎭
(4a)

Yeq. = −Γ

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A0,11

1+4d2
h1A

2
0,11

+ L2
3

K4y
+ L2

4
K3y

A0,21

1+4d2
h1A

2
0,11

− L4
K3y

+ L3
K4y

L4
K3y

L3
K4y

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4b)

As X1eq. and X2eq. are positive for dh1 �= 0, while
X3eq. = X4eq. = 0, the hysteresis appears to produce
a static bias of the inflexion plane, concordant with
the angular speed, while the static support deflection
occurs in the vertical plane. Equations (4a) and (4b)
show also that the static rotor displacement is small
of order dh1 in the horizontal direction, whereas the
changes of the vertical displacement due to hysteresis
are of order d2

h1.
The natural precession modes of the rotor-shaft

system are obtainable ignoring the forcing terms in
Eqs. (3a) and (3b) and putting D = Hi = 0. Defin-
ing with Kkl

ij the 2 × 2 matrix extracted by a generic
4 × 4 matrix K considering only the elements of rows
i and j and columns k and l, putting K̄x = K12

12 −
K34

12(K
34
34xz)

−1K12
34, K̄y = K12

12 − K34
12(K

34
34yz)

−1K12
34,

Xj = Xj0 exp(iΩnθ/Ω), Yj = −iYj0 exp(iΩnθ/Ω),
where the dimensionless precession speed Ωn = ωn/

ωc was introduced, the characteristic equation is a
fourth degree algebraic equation in Ω2

n , dependent
on Ω2

[(
K̄x11 − Ω2

n

)(
K̄x22 − JdΩ2

n

)− K̄2
x12

]

× [(K̄y11 − Ω2
n

)(
K̄y22 − JdΩ2

n

)− K̄2
y12

]

= (K̄x11 − Ω2
n

)(
K̄y11 − Ω2

n

)
J 2

a Ω2Ω2
n (5)

The choice between the plus or minus sign for
Ωn = ±√Ω2

n after solving Eq. (5) for Ω2
n , may be

done in view of getting equal signs for the amplitudes
X1,0 and Y1,0, whence the whirling motion of the ro-
tor centre is a progressive or retrograde precession for
Ωn > 0 or Ωn < 0.
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Fig. 2 Campbell diagrams Ωn(Ω) for L3 = 0.3, Ja = 0.1, Jd = 0.2 (oblong inertia ellipsoid). (a): K3x = K4x = 1, K3y = K4y = 1,
(b): K3x = K4x = 1, K3y = K4y = 2. Circles: axis whirl counter-directed. Crosses: front support whirl counter-directed

Fig. 3 Campbell diagrams Ωn(Ω) for L3 = 0.3, Ja = 0.2, Jd = 0.1 (oblate inertia ellipsoid). (a): K3x = K4x = 1, K3y = K4y = 1,
(b): K3x = K4x = 1, K3y = K4y = 2. Crosses: front support whirl counter-directed

Figures 2 and 3 show the Campbell diagrams for
two examples cases, of an oblong and an oblate el-
lipsoid of inertia of the rotor. The left diagrams re-
fer to isotropic support stiffness and the right ones
to anisotropic stiffness. The continuous lines repre-
sent forward/backward whirl and refer to the motion of
point O1 and to the other motions with the same whirl
direction. When on the contrary the whirl direction of
one support or of the rotor axis is counter-directed with
respect to the rotor centre, a plot with small circles or
crosses is reported, symmetric of course of a continu-
ous branch. Only equal-directed whirling motions may

develop for isotropic support stiffness, whereas some
whirling directions may be opposite to the rotor centre
when the supports have quite different stiffness values
on the two planes.

The response to unbalance can be detected apply-
ing a harmonic balance procedure after replacing X =
Xc0 cos θ + Xs0 sin θ , Y = Yc0 cos θ + Ys0 sin θ into
Eqs. (3a) and (3b). A 16 × 16 algebraic system is ob-
tained, whose solutions permits calculating the steady
elliptical paths of the rotor and the supports.

The principal half-diameters and their angles with
the fixed reference frame are:
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Fig. 4 (a) Elliptical path of point O1(R1 = r1/e), of centres of back and front journal boxes (R3 = r3/e and R4 = r4/e)
and of rotor axis (R2 = l

√
ϕ2 + ψ2/e), for Ω = 0.9; (b) double looped path of point O1 in the rotating frame O3ξ0η0ζ0 for

Ω = 0.9. Data: K3x = K4x = 1, K3y = K4y = 2, Jd = 0.1, Ja = 0.2, L3 = 0.3, Γ = 1, Md = 0.1, γ = 90◦, d1 = d2 = 0.02,
d3x = d4x = d3y = d4y = 0.1, dh1 = 0.1, dh2 = 0.05

aj

bj
=

√√
√
√Y 2

c0,j + Y 2
s0,j + X2

c0,j + X2
s0,j ±

√
(Y 2

c0,j + Y 2
s0,j − X2

c0,j − X2
s0,j )

2 + 4(Xc0j Yc0j + Xs0j Ys0j )2

2
(6a)

tan 2φj = 2(Xc0j Yc0j + Xs0j Ys0j )

X2
c0,j + X2

s0,j − Y 2
c0,j − Y 2

s0,j

(6b)

As an example, Fig. 4a shows the equilibrium
points and the steady elliptical trajectories of the rotor
and the supports during a complete wobbling cycle, for
a particular under-critical case. Figure 4b shows the
path of point O1 in the rotating reference O3ξ0η0ζ0,
pointing out the double looped shape of the trajectory
during one complete revolution.

The frequency response for the four whirling mo-
tions is also reported in Fig. 5 for an example case.
The figures show the major and minor radii of the el-
liptical paths and the angle φ of the major axis with
respect to the horizontal plane. It is observable that
the rotor trajectory tends to a circle with radius equal
to the mass eccentricity e for Ω → ∞, similarly to
the conventional Laval-Jeffcott behavior: the centre of
mass tends to its centred motionless position.

4 Stability of the steady motion

The motion stability can be inspected throughout the
speed range by some perturbation approach, putting
X = Xsteady + X̃, Y = Ysteady + Ỹ, where the subscript

. . .steady indicates the previous steady solutions and the
tilde refers to the small perturbations.

Assuming solutions of the type X̃ = X̃0 exp(σθ/Ω),
Ỹ = Ỹ0 exp(σθ/Ω), where σ is a characteristic num-
ber and using the previous notation, one gets the
twelfth degree characteristic equation

det

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

K12
12 K34

12 0 0

K12
34 K34

34xz 0 0

0 0 K12
12 K34

12

0 0 K12
34 K34

34yz

⎤

⎥
⎥
⎥
⎦

+ 2σ

⎡

⎢
⎢
⎢
⎣

D12
12 0 0 0

0 D34
34xz 0 0

0 0 D12
12 0

0 0 0 D34
34yz

⎤

⎥
⎥
⎥
⎦

+ 2
σ

Ω

⎡

⎢
⎢
⎢
⎣

Hi,
12
12 Hi,

34
12 0 0

Hi,
12
34 Hi,

34
34 0 0

0 0 Hi,
12
12 Hi,

34
12

0 0 Hi,
12
34 Hi,

34
34

⎤

⎥
⎥
⎥
⎦
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Fig. 5 Maximum and minimum orbital radii of the elliptical paths and slope of the principal axes vs rotor angular speed (Ri = ri/e for
i �= 2, R2 = l

√
ϕ2 + ψ2/e). Data: K3x = K4x = 1, K3y = K4y = 2, Jd = 0.1, Ja = 0.2, L3 = 0.3, Md = 0.1, γ = 90◦, d1 = d2 = 0.02,

d3x = d4x = d3y = d4y = 0.1, dh1 = 0.1, dh2 = 0.05

+ 2

⎡

⎢
⎢
⎢
⎣

0 0 Hi,
12
12 Hi,

34
12

0 0 Hi,
12
34 Hi,

34
34

−Hi,
12
12 −Hi,

34
12 0 0

−Hi,
12
34 −Hi,

34
34 0 0

⎤

⎥
⎥
⎥
⎦

+ σ 2

⎡

⎢
⎢
⎢
⎣

M12
12 0 0 0

0 0 0 0

0 0 M12
12 0

0 0 0 0

⎤

⎥
⎥
⎥
⎦

+ Ωσ

⎡

⎢
⎢
⎢
⎣

0 0 G12
12 0

0 0 0 0

−G12
12 0 0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

= 0 (7)

where the subscript i (= 1 or 2) of the hysteresis ma-
trix has to be chosen in accordance with the pre-
vailing of the gravity or the unbalance influence in
the system under examination. The hysteretic factors
are assumed for simplicity unaffected by the pas-
sage from the steady to the perturbed conditions.
Equation (7) may be written in the compact form
Ec(σ ) = b0σ

12 + b1σ
11 + · · · + bjσ

12−j + · · · +
b11σ + b12 = 0, where the coefficient b0 of σ 12 can be
easily found to be equal to 16J 2

d [d3xd4x +dhi(d3xL
2
3 +

d4xL
2
4)/Ω][d3yd4y + dhi(d3yL

2
3 + d4yL

2
4)/Ω] > 0.

As regards the other coefficients, a collocation
method may be applied, choosing six values σi ar-
bitrarily for i = 1,2, . . . ,6, evaluating Ec(σi) and
Ec(−σi) and composing two uncoupled 6 × 6 alge-
braic systems for the even and odd coefficients bj :
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Fig. 6 Stability threshold ds : d3x = d4x = d3y = d4y = ds , d1 = d2 = 0, dhi = 0.02. (a): Influence of support anisotropy (Jd = 0.08,
Ja = 0.1, K3x = K4x = Kx , K3y = K4y = Ky ); (b): gyro effect (K3x = K4x = Kx , K3y = K4y = Ky ); (c): influence of support
asymmetry (Jd = 0.1, Ja = 0.1, K3x = K3y = K3, K4x = K4y = K4); (d): comparison with “infinite” vertical stiffness (Jd = 0.1,
Ja = 0.1, K3x = K4x = Kx , K3y = K4y = Ky )

Ec(σi) + Ec(−σi)

2
− b0σ

12
i

= b2σ
10
i + b4σ

8
i + b6σ

6
i

+ b8σ
4
i + b10σ

2
i + b12

Ec(σi) − Ec(−σi)

2
= b1σ

11
i + b3σ

9
i + b5σ

7
i

+ b7σ
5
i + b9σ

3
i + b11σi

(for i = 1 to 6) (8)

Then, the usual Routh-Hurwitz procedure can be
applied to calculate the thresholds of stability, i.e.
the levels of the external viscous damping needed
to nullify the destabilizing effect of the internal hys-

teresis. This is done exploring the speed range care-
fully for several values of the geometrical and me-
chanical parameters of the rotor-shaft-support system
and increasing stepwise the external viscous damp-
ing by a trial and error technique. The main features
of the system behavior are reported in the examples
of Fig. 6, where the damping factors d1 and d2 are
null and all the others are equal (d3x = d3y = d4x =
d4y = ds ).

Figure 6a reports the stability threshold ds as a
function of the geometrical location of the rotor along
the shaft and in particular shows the effect of the
stiffness anisotropy of the supports. It is interesting
that the increase in the stiffness anisotropy improves
the stability of the whirling motion mainly if the ro-
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tor is mounted at the mid-span of the shaft. Actually,
no external viscous dissipation source is required for
symmetric systems if the relative difference between
horizontal and vertical stiffness is larger than a cer-
tain limit value. This result agrees with the follow-
ing section and with Ref. [9], but it is here shown
how the beneficial influence of the support anisotropy
decreases on shifting the rotor towards the one or
the other support, unless the suspension system is
isotropic, in which case the worst stability conditions
are just found in the symmetric configuration.

Observe that, on increasing the difference Ky −Kx ,
the curves of Fig. 6a begin to show a sort of dip near
L3 ∼= 0.4, which becomes more and more pronounced
until turning the curve towards the point L3 = 0.5,
ds = 0 for higher stiffness gaps (perfect stabilization).
In this region however, the diagrams are quite steep, so
that the best benefit of the suspension anisotropy ap-
pears confined to a rather narrow interval astraddle the
mid-span, though it remains always favorable with re-
spect to the pure isotropic case Ky = Kx also for mod-
erate values of Ky − Kx . Thus, the results of previ-
ous studies (e.g. [9]) are confirmed but appear strongly
limited by an even small change of the rotor position
in the neighborhood of the shaft middle section.

Figure 6b shows similar plots, but focuses on the
gyro structure, which is found to exert a slight but clear
destabilizing effect and in fact, the case of a spherical
ellipsoid of inertia of the rotor (Ja = Jd ) requires the
lowest additional viscous damping to stabilize the ro-
tor whirl.

The influence of the elastic dissymmetry between
the front and back suspension is shown in Fig. 6c,
whose diagrams may be prolonged for L3 > 0.5 by
mirror interchange of the two lower curves. These
plots indicate the convenience of a more flexible sus-
pension of the support closest to the rotor, particularly
if the rotor is mounted roughly halfway between the
mid-span and the support. On the other hand, it is to
be observed that all diagrams of Figs. 6a, b, c, d indi-
cate a stabilizing effect of the geometrical asymmetry
of the rotor configuration and a negligible influence of
the shaft hysteresis for L3 → 0.

At last, the case of”infinite” vertical stiffness (jour-
nal boxes moving only horizontally) is compared in
Fig. 6d with the isotropic stiffness case: the unidirec-
tional support compliance appears here much more
convenient with respect to the axial-isotropic case.

The stability control can be carried out also by nu-
merical integration, starting from random initial val-
ues and using some integration routine, for example of
the Euler-Cauchy type, though this kind of approach
is quite wearisome. Nevertheless, this turns out to be a
convenient procedure when modelling the internal dis-
sipation by the dry friction. Assuming this last friction
model as the most appropriate for a particular system,
the internal hysteretic force acting on the rotor has to
be considered constant and opposite to the relative ve-
locity with respect to the rotating frame shown in the
detail of Fig. 1. Such a force has thus the two com-

ponents Fhx = −Fh,dryvrel.,x/
√

v2
rel.,x + v2

rel.,y,Fhy =
−Fh,dryvrel.,y/

√
v2

rel.,x + v2
rel.,y , where vrel.,x = ẋ1 −

ẋ3L4 − ẋ4L3 + ω(y1 − y3L4 − y4L3) and vrel.,y =
ẏ1 − ẏ3L4 − ẏ4L3 − ω(x1 − x3L4 − x4L3).

Observe that the differential system (3a), (3b) is
of the twelfth order, as the support masses were ne-
glected, and when integrating numerically, the third
and fourth equations of (3a) and (3b) must be solved in
advance for the four derivatives, X′

3, X′
4, Y ′

3, Y ′
4 at each

step. This task can be fulfilled by simple inversion of
sub-matrices in the viscous linear case, but must be
carried out by some iterative procedure in the dry non-
linear one.

The numerical integration of Eqs. (3a) and (3b)
permits comparing the results obtainable by the vis-
cous and dry models. To this end, some equiva-
lence criterion must be stated between the coeffi-
cients Fh,dry and ch or else between the hystere-
sis factors dh,dry = Fh,dry/k0e and dh = 0.5chω/k0,
and this may be done for example by imposing the
same dissipated work over a period of several rev-
olutions of the rotor: dh,dry = 2dh

∫ θ+2Nπ

θ
(ξ ′2

0 +
η′2

0 )dθ/
∫ θ+2Nπ

θ
e

√
ξ ′2

0 + η′2
0 dθ where N 	 1. Dur-

ing the calculation of the diagrams reported in the fol-
lowing Figs. 7 and 8, the dry coefficient dh,dry was up-
dated at the end of each long period according to this
equivalence criterion, until it reached a nearly invari-
able asymptotic value. Then, the numerical integration
re-started using this asymptotic value.

Figure 7 shows the transient path of point O1, in the
viscous and dry assumption, for a stable under-critical
case. As clearly observable, the two diagrams exhibit
nearly the same evolution and tend to the same ellipti-
cal path.

On the contrary, Fig. 8 refers to an unstable over-
critical case, but shows that the two trajectories are
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Fig. 7 Example of stable transient paths of point O1, for viscous and dry hysteretic force and equal dissipative work (50 rev-
olutions). Data: K3x = K3x = 1, K3y = K3y = 3, Jd = 0.1, Ja = 0.2, L3 = 0.4, Γ = 1, Md = 1, γ = 90◦, d1 = d2 = 0,
d3x = d4x = d3y = d4y = 0.1, dh = 0.02, dh,dry = 0.049, Ω = 0.8

Fig. 8 Example of unstable transient paths of point O1 for viscous and dry hysteretic force and equal dissipative work (50
revolutions). Data: K3x = K4x = 1, K3y = K4y = 3, Jd = 0.1, Ja = 0.2, L3 = 0.4, Γ = 1, Md = 1, γ = 90◦, d1 = d2 = 0,
d3x = d4x = d3y = d4y = 0.005, dh = 0.02, dh,dry = 0.012, Ω = 5

roughly similar. Moreover, checking several working
conditions close to the stability threshold with slightly
increasing external damping, it is observable that the
threshold is reached a little in advance by the dry
model. As a result the viscous hysteretic hypothesis
appears conservative and can be conveniently applied
also in the case of uncertainty about the amount of
Coulombian friction within the whole internal dissi-
pation.

5 The symmetric case

5.1 General approach

The effect of the stiffness anisotropy may be eluci-
dated by the straightforward analysis of a rotor which

is mounted at the shaft mid-span and is character-
ized by symmetric supports, K3x = K4x = Kx,tot./2,
K3y = K4y = Ky,tot./2, equal damping factors of the
supports, d3x = d4x = d3y = d4y = ds,tot./2, and zero
external dissipative forces on the rotor, d1 = d2 = 0.
In this case, the conical wobbling is uncoupled with
the cylindrical whirling motion, independent of the
hysteresis and stable. Putting X1 = Xr , X3 + X4 =
2Xs , Y1 = Yr , Y3 + Y4 = 2Ys , observing that Kjz11 =
−2Kjz13 = −2Kjz14 = 1, 2Kjz33 = 2Kjz44 = 1 +
Kj,tot. (for j = x or y), the perturbed cylindrical mo-
tions included in Eqs. (3a) and (3b) may be described
by the simpler differential system:

Xr − Xs + 2dhi

(
X′

r − X′
s + Yr − Ys

)

+ Ω2X′′
r = 0 (9a)
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−Xr + (1 + Kx,tot.)Xs + 2Ωds,tot.X
′
s

− 2dhi

(
X′

r − X′
s + Yr − Ys

)= 0 (9b)

Yr − Ys + 2dhi

(
Y ′

r − Y ′
s − Xr + Xs

)

+ Ω2Y ′′
r = 0 (9c)

−Yr + (1 + Ky,tot.)Ys + 2Ωds,tot.Y
′
s

− 2dhi

(
Y ′

r − Y ′
s − Xr + Xs

)= 0 (9d)

where the tildes have been omitted.
Replacing solutions of the type exp(σθ/Ω), it is

easy to arrive at the sixth degree characteristic equa-
tion
(
H 2 + 4d2

hi

)(
Ax + σ 2)(Ay + σ 2)+ σ 4AxAy

+ σ 2H
[
Ax

(
Ay + σ 2)+ Ay

(
Ax + σ 2)]= 0 (10)

where H = 1 + 2dhiσ/Ω , Ax = Kx,tot. + 2ds,tot.σ ,
Ay = Ky,tot. + 2ds,tot.σ .

In the absence of hysteresis, Eq. (10) becomes
[σ 2(Ax + 1) + Ax][σ 2(Ay + 1) + Ay] = 0, whence
the cubic equations result 2ds,tot.σ

3 + (1 +
Kx,tot. or y,tot.)σ

2 + 2ds,tot.σ + Kx,tot. or y,tot. = 0,
whose roots have negative real parts by the Routh-
Hurwitz criterion. In the presence of hysteresis, the
coefficients b6, b5, . . . , b0 of the characteristic poly-
nomial are somewhat more complex and will be not
reported here. However, it is observable that the fifth
Routh-Hurwitz determinant RH5 is the first one that
becomes critical on increasing the hysteresis factor
dhi , while the other determinants remain positive. Ne-
glecting the viscous damping, in order to assess the
self-stabilizing aptitude of the system within pure
ideal conditions, and assuming the very realistic hy-
pothesis that (2dhi/Ω)2 
 1, this determinant may be
ascertained as positive and then stable if the difference
(Ky,tot. − Kx,tot.) is of the same order of magnitude
of Kx,tot. or Ky,tot.. When on the contrary (Ky,tot. −
Kx,tot.) is of order dhi , one can find RH5 ∼= (2 +
Kx,tot. + Ky,tot.)(Kx,tot.Ky,tot.)

2(2dhi/Ω)3{(Ky,tot. −
Kx,tot.)

2 −8d2
hi[(Ky,tot.−Kx,tot.)

2 +2(Kx,tot.Ky,tot.)
2]}

as the dominant part of RH5, whence the following sta-
bility limit may be obtained irrespective of the angular
speed
∣
∣
∣
∣

Kx,tot.Ky,tot.

Ky,tot. − Kx,tot.

∣
∣
∣
∣<

√
1

16d2
hi

− 1

2
∼= 1

4dhi

(11)

This result is in perfect accordance with Fig. 6a, b for
L3 = 1/2 and points out how the elastic anisotropy of
the supports may exert a strong stabilizing effect.

5.2 Small perturbation approach

Another different approach leads to concordant re-
sults, but clarifies better the stabilizing aptitude of the
stiffness anisotropy of the suspension.

Putting U = X + iY, V = X − iY, multiplying
Eqs. (9c) and (9d) by the imaginary unit i, summing
and subtracting them from Eqs. (9a) and (9b) respec-
tively, one gets

Ur − Us + 2dhi

[(
U ′

r − U ′
s

)− i(Ur − Us)
]

+ Ω2U ′′
r = 0 (12a)

−Ur +
(

1 + Kx,tot. + Ky,tot.

2

)

Us

+ Kx,tot. − Ky,tot.

2
Vs + 2Ωds,tot.U

′
s

− 2dhi

[(
U ′

r − U ′
s

)− i(Ur − Us)
]= 0 (12b)

Vr − Vs + 2dhi

[(
V ′

r − V ′
s

)+ i(Vr − Vs)
]

+ Ω2V ′′
r = 0 (12c)

−Vr +
(

1 + Kx,tot. + Ky,tot.

2

)

Vs

+ Kx,tot. − Ky,tot.

2
Us + 2Ωds,tot.V

′
s

− 2dhi

[(
V ′

r + V ′
s

)+ i(Vr − Vs)
]= 0 (12d)

In the hypothesis that the dissipative factors ds and
dhi are small, the characteristics roots of systems (9a)–
(9d) and (12d)–(12d) are very close to the natural fre-
quencies Ωn. Therefore, putting U = U0 exp(iσθ/Ω),
V = V0 exp(iσθ/Ω), where σ is nearly real and very
close to one of the Ωn’s and the constant vectors U0

and V0 are nearly real as well, it is easy to recog-
nize that U and V describe progressive and retrograde
precession motions respectively for Real(σ ) > 0, or
vice versa for Real(σ ) < 0, which motions are cou-
pled with each other through the differential stiffness
coefficient (Kx,tot. −Ky,tot.)/2. In accordance with the
elliptic shape of the orbital paths, all natural modes
turn out to be composed of progressive and retro-
grade circular motions, which become uncoupled for
Kx,tot. = Ky,tot.. Notice that the ideal non-dissipative
natural modes are uncoupled in the horizontal and ver-
tical planes by Eqs. (9a)–(9d).

All small parameters can be scaled by dhi , putting
ds,tot. = δdhi and σ = Ωn + iλdhi , where δ and λ are
numbers of order one. Then, replacing the above expo-
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nential solutions into Eqs. (12a)–(12d) and retaining

only the terms of order 1 and dhi , one gets a complex

algebraic system for Ur0, Us0, Vr0, Vs0, whose coeffi-
cients are given by the matrix

⎡

⎢
⎢
⎢
⎢
⎣

1 − Ω2
n + 2idhi(s

(−) − λΩn) −1 − 2idhis
(−)

−1 − 2idhis
(−) 1 + Kx,tot.+Ky,tot.

2 + 2idhi(s
(−) + δΩn)

0 0

0 Kx,tot.−Ky,tot.
2

0 0

0 Kx,tot.−Ky,tot.
2

1 − Ω2
n + 2idhi(s

(+) − λΩn) −1 − 2idhis
(+)

−1 − 2idhis
(+) 1 + Kx,tot.+Ky,tot.

2 + 2idhi(s
(+) + δΩn)

⎤

⎥
⎥
⎥
⎥
⎦

(13)

where one has put s(−) = Ωn/Ω − 1 and s(+) =
Ωn/Ω + 1.

Cancelling the terms containing 2idhi , we get the
ideal natural frequencies through the characteristic
equation:
[(

1 + Kx,tot. + Ky,tot.

2

)
(
1 − Ω2

n

)− 1

]2

−
(

Kx,tot. − Ky,tot.

2

)2(
1 − Ω2

n

)2 = 0 (14)

whence Ω2
n = 1/(1 + 1/Kx,tot. or y,tot.) for ds,tot. =

dhi = 0, as also calculable by Eqs. (9a)–(9d).
The first order correction λ to the eigenvalues of

system (12a)–(12d) may be obtained multiplying the
terms with 2idh1 in the determinant of (13) by their
cofactors in the ideal matrix with dhi = 0. After some
algebra, one gets

2idhi

[(

1 + Kx,tot. + Ky,tot.

2

)
(
1 − Ω2

n

)− 1

]

×
(

Ωn

1 − Ω2
n

)
[(

s(−) + s(+)
)
Ω3

n

+ 2δ
(
1 − Ω2

n

)2 − 2λ
]= 0 (15)

Since the quantity (s(−) + s(+))Ω3
n = 2Ω4

n/Ω is
always positive, Eqs. (14) and (15) clearly indicate
that λ is real and positive, so that the motion ap-
pears stable. Nevertheless, for small anisotropy, i.e. for
(Kx,tot. − Ky,tot.)/2 of the same order of dhi , the left
hand of Eq. (15) becomes of order d2

hi by Eq. (14) and
Eq. (15) does no longer hold true in a first approxi-
mation analysis, as other terms should be taken into

account in the development of the determinant (13):
the results from Eq. (15) are then valid only for rel-
atively large anisotropy and reveal stability, in accor-
dance with the previous approach.

For (Kx,tot. − Ky,tot.)/2 of order dhi , one can
put Km = (Kx,tot. + Ky,tot.)/2, κdhi = (Kx,tot. −
Ky,tot.)/2, Kx,tot. = Km + κdhi , Ky,tot. = Km − κdhi ,
where κ = O(1), and the characteristic equation (14)
becomes [(1 + Km)(1 − Ω2

n) − 1]2 = 0 (for dhi → 0),
whence Ω2

n = Km/(1 + Km) twice. The dominant
terms of the complete characteristic equation lead to

4d2
hi

(1 + Km)2

{
[
s(−)K2

m + δΩn − λΩn(1 + Km)2]

× [s(+)K2
m + δΩn − λΩn(1 + Km)2]+ κ2

4

}

= 0

(16)

and, as s(±) = Ωn/Ω±1 and Ωn = ±√
Km/(1 + Km),

Eq. (16) gives
[
K2

m

Ω
+ δ − λ(1 + Km)2

]2(
Km

1 + Km

)

− K4
m + κ2

4
= 0 →

K2
m

Ω
+ δ − λ(1 + Km)2

= ±
√(

1 + Km

Km

)(

K4
m − κ2

4

)

(17)

Equation (17) points out that the absolute sta-
bility (for 0 < Ω < ∞) can be obtained only for
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δ2 > (1 + 1/Km)(K4
m − κ2/4) if K4

m > κ2/4. The sta-
bility is always ensured for any viscous level δ on the
contrary, even for δ → 0, if K4

m < κ2/4, which con-
dition is exactly equal to Eq. (11), if one minds that
Kx,tot.Ky,tot. = K2

m + O(dhi) and κ2/4 = [(Kx,tot. −
Ky,tot.)/(4dhi)]2.

As the perturbed motions under examination are
very close to the natural precession motions, it is also
possible to opt for a slightly greater precision in the
definition of the hysteretic effect and consider such
motions affected by their own hysteretic coefficients
chn = h/|ωn − ω|, inversely proportional to the rel-
ative angular speed |ωn − ω| [31]. Therefore, recall-
ing that one has ch1 = h/ω and dh1 = 0.5h/k0 for the
relative rotation of the equilibrium deflection plane,
the hysteretic damping factors dhi of Eqs. (12a)–(12d)
could be replaced by the more specific ones dhn =
chnω/2k0 = (chn/ch1)h/2k0 = dh1/|Ωn/Ω − 1|. Af-
ter these corrections, the quantities s(±) would now
stand for sgn(Ωn/Ω ± 1) in Eq. (16) and one would
have s(+) = 1, s(−) = −1 in the supercritical regime.
As a consequence, Eq. (17) would still be applicable,
save the disappearance of the term K2

m/Ω , and the fi-
nal result (11) would then remain unchanged.

5.3 Averaging technique

A new original approach, which may be considered as
an extension of the Krylov-Bogoliubov method [32] to
several degrees of freedom, can be also applied to the
search of the stability threshold for weakly non-linear
systems. This procedure is well suited for autonomous
systems and is here applied in the hypothesis of ab-
sence of gravity and unbalance, in order to confirm the
equivalence between dry and viscous internal dissipa-
tion.

Summing Eqs. (9a) and (9b), summing Eqs. (9c)
and (9d), indicating the small parameter dhi with ε

and using the previous notation for the other quanti-
ties, one gets

Ω2X′′
r + KmXs + ε

(
2ΩδX′

s + κXs

)= 0 (18a)

Ω2X′′
r + Xr − Xs + εΦX = 0 (18b)

Ω2Y ′′
r + KmYs + ε

(
2ΩδY ′

s − κYs

)= 0 (18c)

Ω2Y ′′
r + Yr − Ys + εΦY = 0 (18d)

where one has to put ΦX = (dh,dry/dhi) cosψ and
ΦY = (dh,dry/dhi) sinψ for non-linear dry friction,

where tanψ = (Y ′
r −Y ′

s −Xr +Xs)/(X
′
r −X′

s +Yr −
Ys), while ΦX = 2(X′

r − X′
s + Yr − Ys) and ΦY =

2(Y ′
r − Y ′

s − Xr + Xs) for viscous friction.
The zero order solution (ε = 0) is Xr = A cos(ρθ +

α), Yr = B sin(ρθ + β), Xs = Ω2
nXr/Km, Ys =

Ω2
nYr/Km, where ρ = Ωn/Ω , Ω2

n = Km/(1 + Km).
Hence, similarly to the Krylov-Bogoliubov proce-
dure, one can try a first order solution of the type
Xr = A(θ) cos[ρθ +α(θ)], Yr = B(θ) sin[ρθ +β(θ)],
Xs = Ω2

nXr/Km + a(θ), Ys = Ω2
nYr/Km + b(θ), and

impose the extra conditions X′
r = −ρA(θ) sin[ρθ +

α(θ)], Y ′
r = ρB(θ) cos[ρθ + β(θ)]. Replacing this so-

lution into Eqs. (18a)–(18d) and neglecting terms of
order ε2 or smaller, one obtains two coupled differen-
tial systems for the six unknown functions A(θ), B(θ),
α(θ), β(θ), a(θ), b(θ):

Aα′ΩnΩ cos(τ − μ) + A′ΩnΩ sin(τ − μ) − Kma

= ε
Ω2

n

Km

A
[
κ cos(τ − μ) − 2δΩn sin(τ − μ)

]
(19a)

Aα′ΩnΩ cos(τ − μ) + A′ΩnΩ sin(τ − μ) + a

= εΦX (19b)

Aα′ sin(τ − μ) − A′ cos(τ − μ) = 0 (19c)

Bβ ′ΩnΩ sin(τ + μ) − B ′ΩnΩ cos(τ + μ) − Kmb

= ε
Ω2

n

Km

B
[
2δΩn cos(τ + μ) − κ sin(τ + μ)

]
(20a)

Bβ ′ΩnΩ sin(τ + μ) − B ′ΩnΩ cos(τ + μ) + b

= εΦY (20b)

Bβ ′ cos(τ + μ) + B ′ sin(τ + μ) = 0 (20c)

where it was put τ = ρθ + (α + β)/2 and μ = (β −
α)/2 for brevity. Equations (19a)–(19c) and (20a)–
(20c) indicate that the quantities A′, α′, a, B ′, β ′ and b

are small of order ε, whence the amplitudes A(θ) and
B(θ) and the phases α(θ) and β(θ) vary much more
slowly than the argument ρθ .

Considering only the dominant terms of ΦX and
ΦY and carrying out some calculations, we may arrive
at

ΦX =
(

dh,dry

dhi

)
B sin(τ + μ) − Aρ sin(τ − μ)

√
W

√
1 − k2 sin2(τ − φ)

(21a)

ΦY =
(

dh,dry

dhi

)
ρB cos(τ + μ) − A cos(τ − μ)

√
W

√
1 − k2 sin2(τ − φ)

(21b)

where tan 2φ = [(A2 + B2)/(A2 − B2)] tan 2μ and
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W = (A2 + B2)(1 + ρ2) − 4ABρ cos 2μ + |1 − ρ2|√A4 + B4 − 2A2B2 cos 4μ

2
(22a)

k2 = 2|1 − ρ2|√A4 + B4 − 2A2B2 cos 4μ

(A2 + B2)(1 + ρ2) − 4ABρ cos 2μ + |1 − ρ2|√A4 + B4 − 2A2B2 cos 4μ
(22b)

Moreover, neglecting the change of the slowly varying
variables, the condition of equal dissipative work for
dry and viscous friction reads

dh,dry

dhi

= 2Ω2
n

√
W

{ ∫ 2π

0 [1 − k2 sin2(τ − φ)]dθ

∫ 2π

0

√
1 − k2 sin2(τ − φ)dθ

}

= πΩ2
n

√
W(1 − k2

2 )

E(k)
(23)

where E(k) is the Legendre’s complete elliptic inte-
gral of the second kind.

Replacing Eqs. (21a) and (21b) into Eqs. (19a)–
(19c) and (20a)–(20c), using Eqs. (22a), (22b) and
(23), solving for A′, B ′, α′, β ′, and integrating with
respect to the “quick” variable τ over a period 2π ,
the gradients A′, α′, B ′, β ′ turn out to be functions of
the complete elliptic integrals of the first and second
kinds, whose values may be found tabulated in several
mathematical handbooks. Putting εΩ = ε/[ΩΩn(1 +
Km)2], one gets

A′ = εΩ

(

K2
m

{
(2 − k2)[K(k) − E(k)]

k2E(k)

× [B cos 2φ − ρA cos 2(μ − φ)
]

− (2 − k2)K(k)

2E(k)

[
B(cos 2φ − cos 2μ)

+ ρA − ρA cos 2(μ − φ)
]
}

− δΩnA

)

(24a)

B ′ = εΩ

(

−K2
m

{
(2 − k2)[K(k) − E(k)]

k2E(k)

× [A cos 2φ − ρB cos 2(μ + φ)
]

+ (2 − k2)K(k)

2E(k)

[−A(cos 2μ + cos 2φ)

+ ρB + ρB cos 2(μ + φ)
]
}

− δΩnB

)

(24b)

Aα′ = εΩ

(

K2
m

{

− (2 − k2)[K(k) − E(k)]
k2E(k)

× [B sin 2φ + ρA sin 2(μ − φ)
]

+ (2 − k2)K(k)

2E(k)

[
B(sin 2μ + sin 2φ)

+ ρA sin 2(μ − φ)
]
}

+ κ

2
A

)

(24c)

Bβ ′ = εΩ

(

K2
m

{
(2 − k2)[K(k) − E(k)]

k2E(k)

× [A sin 2φ − ρB sin 2(μ + φ)
]

− (2 − k2)K(k)

2E(k)

[
A(sin 2μ + sin 2φ)

− ρB sin 2(μ + φ)
]
}

− κ

2
B

)

(24d)

where K(k) is the Legendre complete elliptic integral
of the first kind.

The problem is thus formally solved and, though
it is still non-linear and somewhat difficult in appear-
ance, may lead to a simple stability analysis. Actually,
both the quantities (2 − k2)[K(k) − E(k)]/[k2E(k)]
and (2 − k2)K(k)/[2E(k)], appearing in Eqs. (24a)–
(24d), tend to the unity for k → 0, i.e. on approaching
the critical speed ρ ∼= 1 (22b) and increase just slightly
on increasing k, but keeping very close to one as long
as k < 0.8 roughly. Then, simple approximate results
are obtainable letting k → 0,E(k) → π/2, K(k) →
π/2 and K(k) − E(k) → πk2/4:

A′ = εΩ

[

K2
mB cos 2μ − Ωn

(

δ + K2
m

Ω

)

A

]

(25a)

B ′ = εΩ

[

K2
mA cos 2μ − Ωn

(

δ + K2
m

Ω

)

B

]

(25b)

Aα′ = εΩ

(

K2
mB sin 2μ + κ

2
A

)

(25c)

Bβ ′ = −εΩ

(

K2
mA sin 2μ + κ

2
B

)

(25d)

Multiplying Eq. (25a) by A, Eq. (25b) by B and
subtracting, one obtains (A2 − B2)′ = −2εΩΩn(δ +
K2

m/Ω)(A2 − B2), whence A − B → 0 and we may
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put A ∼= R, B ∼= R after some time. Hence, Eqs. (25a),

(25b) become

R′

R
= εΩ

[

K2
m cos 2μ − Ωn

(

δ + K2
m

Ω

)]

(26)

while Eqs. (25c), (25d) give

μ′ = −εΩ

(

K2
m sin 2μ + κ

2

)

(27)

This last equation can be integrated, giving

tanμ =
√

1 − 4K4
m

κ2
tan

(

−εΩϑ

√
κ2

4
− K4

m

)

− 2K2
m

κ
for κ2 > 4K4

m (28a)

tanμ = (
2K2

m

κ
+
√

4K4
m

κ2 − 1) exp(−2εΩϑ

√
K4

m − κ2

4 ) − (
2K2

m

κ
−
√

4K4
m

κ2 − 1)

1 − exp(−2εΩϑ

√
K4

m − κ2

4 )

for κ2 < 4K4
m (28b)

where the new variable ϑ = θ − θ0 includes the inte-
gration constant θ0.

Equations (28a), (28b) permit expressing cos 2μ as
a function of ϑ and integrating Eq. (26). Omitting the
calculation procedure for brevity, it is possible to find
that

∫ ϑ

0 [K2
m cos 2μ − Ωn(δ + K2

m/Ω)]dϑ is a diverg-
ing negative function of ϑ for κ2 > 4K4

m, whereas
it is easily observable that tanμ → √

4K4
m/κ2 − 1 −

2K2
m/κ for ϑ → ∞ when κ2 < 4K4

m, implying that
μ tends to an asymptotic nonzero value and sin 2μ →
−κ/2K2

m. Therefore, R tends to vanish and the motion
is certainly stable for κ2 > 4K4

m, as also ascertained
through Eq. (17) by the previous approach, whereas
for κ2 < 4K2

m, replacing cos 2μ = ±√1 − (κ/2K2
m)2

into Eq. (26), it is possible to arrive at the stability con-
dition ±√K4

m − κ2/4 < Ωn(δ +K2
m/Ω), which is ex-

actly the same as Eq. (17). Thus, using the averaging
approach, we obtain similar results for linear and non-
linear internal friction.

Clearly the treatment of cases with a larger modu-
lus k is more wearisome and the numerical solution of
Eqs. (18a)–(18d) turns out to be preferable, though it is
still possible to face the problem by simple approxima-
tion formulas for the elliptic integrals [33]. Anyway,
also the above procedure confirms the result similarity
of the viscous and dry models for the internal friction,
provided that the equivalence of the dissipative work
per cycle is properly imposed.

5.4 Concluding remarks on progressive and
retrograde motions

Should we consider the true isotropic case Kx,tot. =
Ky,tot. = Km, κ = 0, Eqs. (12a) and (12b) would be

uncoupled with Eqs. (12c) and (12d), the ideal natural
frequencies would be given by Ω2

n = Km/(1 + Km)

(twice) and the stability equation (16) would change
into s(±)Km

√
Km(1 + Km) + δ − λ(1 + Km)2 = 0,

the minus and plus signs referring to progressive and
retrograde rotations respectively (U progressive and
V retrograde for Ωn > 0). While the retrograde mo-
tions V are stable, the progressive ones U may happen
to become unstable on increasing the angular speed,
as s(−) becomes negative. Nonetheless, the condi-
tion of absolute stability (λ > 0 for ω → ∞) would
still be δ − Km

√
Km(1 + Km) > 0 and it is also re-

markable that all the above results are valid for both
the hypotheses, that s(±) = Ωn/Ω ± 1, or else that
s(±) = sgn(Ωn/Ω ± 1). The same results are obtain-
able for the non-linear case by the previous averag-
ing approach. For κ = 0 in fact, Eq. (27) indicates that
μ → 0, whence Eq. (26) yields the stability condition
K4

m < Ω2
n(δ + K2

m/Ω)2.
Summing up, Eq. (16) yields the interesting in-

dication that the stabilizing effect of the stiffness
anisotropy of the supports is associated in practice to
a sort of coupling between progressive and retrograde
precession motions (κ �= 0), which coupling is absent
in the isotropic systems (κ = 0).

6 Conclusion

The present paper discusses how to counteract the
destabilizing effect of the shaft internal hysteresis in
the supercritical regime of a rotating machine by mak-
ing use of other dissipative sources or by planning
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anisotropic support stiffness, differentiated in the hor-
izontal and vertical planes. An equivalent coefficient
of linear viscous damping, inversely proportional to
the angular speed, may be introduced for the calcu-
lation of the hysteretic friction force, which may be
assumed proportional to the rotor centre velocity rel-
ative to a reference frame rotating with the shaft end
sections. Otherwise, in the hypothesis of Coulombian
internal friction, the internal force may be assumed as
constant and constantly in opposition to the relative
velocity. The natural precession modes and frequen-
cies are easily calculated, and assuming some small
unbalance, the elliptical paths of the rotor and the bear-
ings, together with the conical locus of the rotor axis,
are inspected throughout the speed range. The Routh-
Hurwitz procedure may be applied to control the sta-
bility of the steady motion and the influence of sev-
eral design characteristics of the rotor system on the
stability may be analyzed, searching in particular for
the viscous level needed for the stabilization in the
whole speed range. The results confirm that the rotor
whirl instability may be conveniently counterbalanced
by planning different suspension stiffness characteris-
tics in the horizontal and vertical planes, or in general
in two orthogonal planes through the bearing centres.
Nevertheless, this favorable effect is remarkable for
rotors equidistant from the supports, but tends to be-
come much less efficacious when the rotor is mounted
away from the mid-span. A first approximation ana-
lytical approach points out that this stabilizing effect
may be thought as associated with the coupling be-
tween progressive and retrograde precession motions.
The two different hypotheses about the internal fric-
tion, viscous or dry, do not affect remarkably the re-
sponse and the stability of the rotating system, pro-
vided that the comparison is made in conditions of
equal dissipative work per shaft revolution.
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