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Abstract 

 

A very common configuration of motorcycle V-belt variators allows for the correction of the belt 

tensioning in dependence on the resistant torque by a suitable helical shape of the tracks that 

enable the closure/opening of the driven half-pulleys. The theoretical model for the belt-pulley 

coupling is just complex for this arrangement, where one half-pulley may run in advance and the 

other is slower than the belt, and requires the repeated numerical solution of a strongly non-linear 

differential system by a sort of shooting technique, until all boundary conditions are fulfilled 

(angular contact extent, torque, axial force). After solving the full equations, the present study 

develops closed-form approximations characterized by an excellent fit with the numerical plots and 

proposes a simple and practical formulary for the axial thrust in dependence on the torque and the 

tension level. Then, results of a theoretical-experimental comparison are also reported, revealing a 

very good agreement of the model with the real operation. 

 

 

List of symbols 

 

a, b regression coefficients of Eq. (11) 

d diameter of helical track [mm] 

f, fs sliding and static friction coefficients 

fa ≤ fs adhesion factor  

Fz axial thrust [N] 

Fz0 spring pre-load on fully closed driven 

pulley [N] 

F'w wall force per unit angle [N] 

ib unit vector parallel to belt 

k = 2tanαSt /Sl    belt stiffness number 

k1 = k tan(α + arctanf) / tanα 

k2 = k tan(α − arctanf) / tanα 

K spring constant of driven actuator [N/mm] 

m, n regression parameters for Eq. (11) 

mc total centrifugal mass of driver actuator [g]  

M torque [Nm] 

p = xout /εd,out    penetration-to-elongation 

asymptotic ratio 

r radius [mm] 

rc radial coordinate of roller center [mm] 
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r t track radius of driven actuator [mm] 

r t0 radial coordinate of track center of driver 

actuator [mm] 

r∞ wrap radius for infinite transverse stiffness 

of the belt [mm] 

Sl, St  longitudinal and transverse belt 

stiffness [N] 

Sf flexural belt stiffness [Nmm2] 

t time [s] 

T belt force [N] 

u dimensionless circumferential component 

of sliding velocity 

v, vs total and sliding velocities [m/s] 

x = (r∞ − r) /r∞    dimensionless belt penetration 

zt0 axial coordinate of track center of driver 

actuator [mm] 

α groove half-angle 

βs, βf actuator track slopes on driver side 

γ, γw  sliding angle (on plane of rotation, on 

pulley wall) 

δ helical track slope on driven side  

ε = T/Sl belt longitudinal elongation 

θ angular coordinate 

µ belt mass per unit length [g/mm] 

ρ = r& /(ωf  ⋅r) ≅ ∞r& /(ωf  ⋅r∞) shift-to-

peripheral speed ratio  

χ belt penetration angle (Fig. 3) 

ψ belt velocity angle (Fig. 3) 

ω angular velocity [s-1] 

Ω = ωs /ωf    speed ratio between sliding and 

fixed half-pulleys  

 

Subscripts and superscripts 

b parallel to belt 

con.    connection point between sub-regions 

d dynamical belt force, elongation 

E contact exit endpoint 

f fixed half-pulley 

in initial point of main inner region 

n normal to pulley wall 

N driven pulley 

out final point of main inner region 

p peripheral wall force 

R driver pulley 

s sliding half-pulley 

S slack strand 

T tight strand 

U upstream point of adhesive region 

w pulley wall 

(…)'  = ∂(…)/∂θ 

( )
•
...  = ∂(…)/∂t 

 

 

1. Introduction 

 

All continuously variable transmissions (CVT) for vehicle application alternate up-shift and 

down-shift phases of the speed ratio in a typically random manner in order to comply with the 

driving requests. Besides, due to the relatively low efficiency of the variable speed unit, proper 
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strategies are requested for reducing or increasing the clamping thrust on the pre-forcing pulley in 

dependence on the lower or higher resistant torque level. In cases of small power, as for example in 

motorcycles, a common full-automatic solution consists in controlling the speed ratio by centrifugal 

masses on the driver side, exerting the closure force through spring loads on the driven side and 

enslaving the axial push to the resistant torque by proper helical tracks between the driven half-

pulleys. The consequence of this kinematical constraint is that the two plates do not rotate 

synchronously in shift conditions, but the sliding one is in advance or in retard with respect to the 

other, in the closing or opening period respectively. 

While the steady behavior of the belt drives can be considered already established [1-6], only a 

few theoretical approaches to the shift state may be found in the literature (e. g. see [7-12], also for 

an overview on other references). Thus, a wide experimental campaign has been carried out by the 

authors' team on motorcycle variators and attempts at formulating either complete or simplified 

practical models for design purposes have been carried out. Due to the helical arrangement of the 

driven half-pulley tracks, the translational closure theory of [7] has been modified in order to 

consider the different sliding conditions of the belt on the fixed and movable plates. On the 

contrary, the theoretical approach of [7] remains applicable to the driver pulley and involves the 

presence of adhesive or adhesive-like sub-regions inside the arc of contact, for the closing or 

opening phases respectively. Proofs of the existence or non-existence of these sub-regions were 

given in [7], highlighting their characteristics, which might be referred back, in a remote but strict 

connection, to the well-known Grashof's concept of adhesive arc (Ruhebogen). The one-

dimensional thin belt approach has been applied, considering the belt as a continuous material 

flowing inside a very thin stream tube formed by its own external surface, which is in motion during 

the shift. Moreover, any micro-tribological aspect of the belt-pulley contact has been disregarded 

due to the need of limiting the complexity of the whole mathematical model. 

Getting numerical solutions is quite laborious for either relative motion of the half-pulleys, axial 

or helical, and demands much care because of the strong non-linearity of the system equations, of 

their "boundary layer" nature and of their consequent aptitude to an unstable numerical trend. 

Actually, the present analysis belongs to the category of "degenerescent" problems, where a small 

scale factor multiplies one of the highest derivatives, and thus, similarly to other analogous classical 

problems, such as e. g. the van der Pol relaxation oscillations or the boundary layer flows, the 

solutions are very sensitive to small changes of the boundary/initial conditions (see [1], Section 4), 

which sensitivity is additionally worsened by the one-dimensionality. Furthermore, the numerical 

integration, to be carried out for example by some Runge-Kutta routine starting from one of the two 

endpoints, must be reiterated by a sort of shooting technique until all the external boundary 
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conditions are fulfilled (wrap arc, applied torque and axial thrust). Therefore, in addition to the full 

equation solution, a second important objective of this study is to devise proper closed-form 

approximate solutions in order to frame a simplified formulary useful for practical purposes, as will 

be shown in Section 3. 

Hence, as such closed-form solutions permit a prompt calculation of the main characteristics of 

the drive, i. e. the free strand tensions and the axial forces on the two pulleys, a comparison of the 

theory with several experimental results can be also carried out, as reported in Section 4. 

 

 

2. Comparative Analysis of the Axial and Helical Shift Mechanics 

 

In parallel with the theory of [7], the changes implied by the helical shift motion of the driven 

pulley plates will be specified in the following. Figures 1-3 describe the scheme of the variable 

speed drive and show in particular the two actuators, the wall force components acting on an 

elementary belt segment and a fixed dihedral control volume with the projection on the plane of 

rotation of the triangles of velocities on the two sides. 

The non-dimensional penetration variable x = (r∞ − r) /r∞ is scaled by the nominal radius r∞ and, 

denoting the partial differentiation with respect to θ with primes, the geometrical relationship r'  = − 

r tanχ changes into 

( ) χtan1 xx −=′   →  x' ≅ χ (1), (1∼)

where the tilde notation (…∼) will henceforth indicate the approximate form of the homologous 

equations (…), neglecting small order terms. 

The total time derivative of the radial coordinate of a moving belt element can be written as the 

sum of a local and a convective term, dr/dt = r&+θ& r' , where dots indicate partial differentiation with 

respect to the time t. Since dr/dt = − v sinψ and θ&= v cosψ/r, one has v sinψ = v cosψ tanχ − r& . 

Distinguishing the sliding and fixed half-pulleys with the subscripts s and f respectively, their 

angular velocities are equal for the driver pulley but are different for the driven pulley, (see Figs. 1 

and 3), i. e. ωs = ωf + ∆ω = ωf +  4r& tanδ tanα /d =  ωf  (1 + 4rρtanδ tanα /d), where 2r& tanα is the 

axial velocity of the movable half-pulley, δ and d/2 are the helical slope and radius, ρ = r& /(ωf ⋅r) ≅ 

∞r& /(ωf ⋅r∞) is the shift-to-peripheral speed ratio, referred to the fixed half-pulley, and one may put δ 

= ∆ω = 0 for the driver pulley. Notice that ∆ω is positive or negative for the closing or opening 

phases (ρ > 0 or ρ < 0) and is quite small, because ρ is usually of order 1/1000 or lower, i. e. of the 

same order of magnitude of the belt elastic deformation. 
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As a consequence of the different angular speeds of the sliding and fixed plates, two different 

slip angles must be defined, on the pulley walls, γw,s and γw,f (Fig. 2), and on the plane of rotation, γs 

and γf (Fig. 3), whence two triangles of velocities can be observed in Fig. 3, which yield the 

kinematical relationships v cosψ = ωs r + v sinψ tanγs and v cosψ = ωf r + v sinψ tanγf. The above 

trajectory equation, v sinψ = v cosψ tanχ − r& , and the last two kinematical relationships can be 

combined into 

s

s

f

f

f

f

f r

v

γχ
γρΩ

γχ
γρ

γχ
γρ

ω
ψ

tantan1

tan

tantan1

tan1

tantan1

tan1cos

−
−=

−
−

−
−

=
⋅

 (2a,b) 

where Ω = ωs /ωf = 1 + 4rρ tanα tanδ /d. For the driver pulley, one has ωs = ωf = ω, Ω = 1, γs = γf = 

γ, and observes that, if χρ tan=  and 1 − tanχ tanγ ≠ 0, then v cosψ = ω⋅r and v sinψ = 0, i. e. 

there is adhesion between the belt and the pulley. Therefore, x' = (1 − x)ρ ≅ ρ along an adhesion 

sub-region by Eq. (1). In the case of a driven pulley on the contrary, no adhesion sub-region may 

develop and the relationship between the two sliding angles is obtainable by Eq. (2b) 

( )
ρχ

ρχΩγΩ
γ

−
−+−

=
tan

tantan1
tan

f
s   →  

( )
ρχ

ρχΩγΩ
γ

−
−+−

≅ f
s

tan1
tan  (3), (3∼) 

Combining the Lagrangian and Eulerian formulations of the mass conservation conditions, µ(1 + 

ε) = constant (Lagrange) and ( ) ( ) 0coscoscos =∂∂+∂∂ θχψµχµ vtr  (Euler), where µ is the belt 

mass per unit length, ε = T/Sl << 1 is the longitudinal elongation and Sl [N] is the longitudinal 

stiffness, and accounting for Eqs. (1) and (2a), one may arrive, as in [7], at the equation 

( ) ( ) ρχχ
ε

ε −




 ′−+
+

′
+=′ 1tan

1
1 uu   →  u' ≅ ε' + χ − ρ (4), (4∼)

where u is the dimensionless circumferential component of the sliding velocity on the fixed half-

pulley, u = vs,f sinγf /(ωfr ) = vcosψ/(ωfr ) −  1 = ( ) ( )χγγρχ tantan1tantan ff −− , whence 

( ) ρχ
γ

−+
=

tan1
tan

u

u
f   →  

ρχ
γ

−
≅ u

ftan   (5), (5∼)

Neglecting all the inertia terms smaller than the centrifugal forces, which are dominant, the 

momentum transport theorem can be written in the form [(T − µvb
2)ib]' + F 'w ≅ 0, where F'w is the 

resultant wall force per unit angle of contact and the term µvb
2ib = µv2cos2(χ − ψ)ib represents the 

momentum flux in the belt direction, which however is generally much smaller than T and may be 

assumed constant along the belt path. In practice, the belt force T may be replaced in the analysis by 
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the "dynamic" force Td = T − µvb
2 and the "dynamical" elongation εd = (T − µvb

2) /Sl may be also 

introduced. 

The above equilibrium equation can be split in the directions tangential and normal to the belt 

on the plane of rotation. Moreover, introducing the belt compression-to-penetration ratio 2tanα and 

the belt transverse stiffness per unit length Ez h /w, where h and w are the belt height and width, the 

transverse stiffness parameter St = 2 tanα Ez h r∞
2 /w [N] may be defined, which permits expressing 

the elementary axial push as a function of the radial elastic penetration by means of a transverse 

"constitutive" equation. Summing up, we have 

Sl dεd  = ∑
= sfj ,

[sinα sinχ + f(cosγw,jcosα sinχ + sinγw,j cosχ)] dFn,j (6)

Sl εd (1 + χ') dθ  = ∑
= sfj ,

[sinα cosχ + f(cosγw,j cosα cosχ − sinγw,j sinχ)] dFn,j (7)

dFz = (cosα − f cosγw,f sinα) dFn,f = (cosα − f cosγw,s sinα) dFn,s = 
( )

χ
θ

cos

1 dxxSt −
 (8)

Minding that tanγw,j = cosα tanγj for j = f or s, whence cosγw,j = sgn(cosγj) / jγα 22 tancos1+  

= cosγj / jγα 22 sinsin1−  and sinγw,j = cosγw,jtanγjcosα = sinγjcosα / jγα 22 sinsin1− , 

Equations (8) permit eliminating the elementary wall forces dFn,j and the wall sliding angles γw,j 

from Eqs. (6,7) 

( ) ( )
∑
= 














−−

++−−=′
sfj jj

jj
d

f

fxkx

, 22

22

costansinsin1

sinsinsin1tansin

costan2

1

γαγα

χγγααχ
χα

ε  

→    ∑
= 
















−−
≅′

sfj jj

j
d

f

fkx

, 22 costansinsin1

sin

tan2 γαγα

γ
α

ε  

(9)

(9∼)

( ) ( )
∑
= 














−−

++−−+−=
sfj jj

jj

d f

fxkx

, 22

22

costansinsin1

cossinsin1tancos

costan2
1

1'
γαγα

χγγααχ
χαε

χ  

→     ∑
= 
















−−

+−
≅

sfj jj

jj
d

f

fkx

, 22

22

costansinsin1

cossinsin1tan

tan2 γαγα

γγαα
α

ε  

(10)

(10∼)

where the dimensionless stiffness number of the belt, k = 2 tanα St /Sl, has been introduced as in [2-

3]. It is remarkable that Equation (10∼) leads to the three notable relationships: 1) εd ≅ k1x for γf ≅ γs 
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≅ 0, 2) εd ≅ k2x for γf ≅ γs ≅ ±π, 3) εd ≅ kx for γf ≅ γs ≅ ±π /2, where k1 = k tan(α + arctanf) /tanα, k2 = 

k tan(α − arctanf) /tanα (k2 < 0 usually). 

In conclusion, we have collected four differential equations, Eqs. (1), (4), (9), (10), and two 

parametric equations, Eqs. (3), (5), in the six variables x, εd, χ, u, γf and γs, the first four of which are 

very small (of order ∼1/1000), whilst the sliding angles |γj| may range between 0 and π. For the 

driver pulley of the CVT under examination, we have one equation less, Eq. (3), and five variables 

as a whole, because γs = γf = γ, Ω = 1. 

As specified in [7], the use of the abridged equations (…∼) is fairly acceptable in the main 

internal portion of the arc of contact, but not in the two short boundary regions. Actually, the 

differential system "degenerates" from the fourth to the third order, when reduced to its abridged 

form, because Eq. (10) changes into the non-differential relationship (10∼) and one of the boundary 

conditions can no longer be fulfilled. Due to the "boundary layer" type of the problem, the variables 

are expected to change rather smoothly along most of the arc of contact and exhibit large gradients 

near the boundaries, in order to fulfill the boundary conditions. 

The complete numerical solution has to be calculated as an initial value problem, separately for 

each pulley, starting from one endpoint of the winding arc, for example the exit point E, where the 

transverse compression must be zero (x = 0) and proceeding towards the other endpoint, where the 

variable x vanishes again. Three initial conditions must be imposed, for ε, χ, u (or else, γf  or γ in 

place of u), which must be modified by trial and error by a sort of shooting technique until three 

typical working conditions are fulfilled: contact width Θ, traction force Tout − Tin = Sl (εd,out − εd,in) 

(torque) and axial load Fz, calculable by Eq. (8) Fz = ( )∫ −
arcwrap

cos1 χθdxxSt ≅ ∫ arc  wrap
θxdSt . 

The in-depth analysis of [7] for the axial shifting of the sliding half-pulley (driver side) proves 

that an internal adhesive region must develop in the closing phase (ρ > 0) and an adhesive-like one 

in the opening phase (ρ < 0). In particular, all the previous relationships remain valid in the 

adhesive sub-region, but considering f as a variable adhesion factor fa and γ as the angle γa of the 

resultant elementary adhesion force in the rotation plane. The adherence limit is reached at the 

upstream boundary of the adhesive region, where fa = fs, fs being the coefficient of static friction. As 

tanχ = ρ = constant and u = 0 along the adhesive region, Equation (4) gives ε' = 0 (constant belt 

force), while the integration of Eq. (1) yields, with reference to the upstream endpoint U of the 

adhesive region, x = 1 − (1 − xU) exp[− ρ (θ − θU)], i. e. x ≅ xU + ρ (θ − θU) and x' ≅ ρ. Therefore, 

the belt path has the shape of a slightly inward coiling logarithmic spiral, which, since x and ρ are 

very small, may be roughly confused with a linear spiral of Archimedes, whose radius increases for 

fixed θ because of the pulley rotation. The axial opening of the driver pulley implies on the contrary 
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the development of adhesive-like sub-regions with very small sliding velocities, where the 

dynamical elongation εd and the elastic penetration x vary nearly linearly with the angular 

coordinate, with the gradients x' ≅ ρ /(1 + k1) and ε'd ≅ k1ρ /(1 + k1) (see [7], Sect. 4). 

Of course, in the helical shift case (driven pulley), the development of an adhesive region must 

be excluded a priori, due to the different velocities of the pulley walls on the two sides of the belt. 

By way of example, Figures 4 to 7 report numerical results for the four possible working 

conditions of a pulley: driver/driven, opening/closing. While the dimensionless shift speed ρ and 

the centrifugal force µvb
2 were fixed and the initial values of the variables, εd,E and γf,E (or simply γE 

for the driver pulley), were imposed at the contact exit point E, the third initial value χE, which must 

be negative because the belt emerges from the groove, was adjusted by an iterative procedure in 

order to reach a pre-fixed wrap width. In general, it is noteworthy that: 1) a decrease of the exit belt 

angle χE (< 0) produces an increase of the contact width, but a great care must be put in avoiding an 

excessive decrease, which may lead to unacceptable solutions with diverging penetration; 2) small 

increases of the exit sliding angle γf,E (or γE), which must be very close to ±π in order to get 

acceptable solutions, tend to transform the pulley behavior from driven to idler and then to driver; 

3) an increase of the exit elongation εd,E produces an increase of the axial thrust. 

The four figures show that the belt angle χ is rather small, save in the short seating and 

unseating regions, where relatively large negative gradients χ' are also observable, due to the need 

of attaining the endpoint condition 1 + χ' = 0 (zero curvature) according with Eq. (10). The sliding 

angle γ keeps close to 0 and π in such boundary regions, where then the belt tension remain 

approximately constant, and moreover, while γ shows a smooth connection in the passage from the 

seating region to the main inner region of contact, it is subject to a sharp variation in the passage 

from the main region to the unseating region. Therefore, in the search for approximate solutions 

valid in the main inner region of contact, one may put εd,in ≅ k1xin at its beginning (subscript …in), 

but a similar relationship cannot be written at the end (subscript …out). Notice that the subscripts 

(…in) and (…out) of the present treatment refer to the endpoints of the main inner region, excluding 

the small boundary sub-regions of seating and unseating, and do not indicate the whole contact 

endpoints, where x = 0. 

A new aspect, original with respect to the axial sliding, appears now considering the helical 

relative sliding. Due to the different angular speeds and the different sliding conditions on the two 

plates, the whole transmitted torque M is no longer equally shared between them because the 

elementary tangential wall forces are not equal and may even have opposite directions in some 

portion of the arc of contact, as appears on the diagrams of Figs. 6 and 7. The peripheral 
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components F'p of the wall forces per unit angle of contact, on the one and the other plate, can be 

obtained by Eq. (8), multiplying dFn,j by fsinγw,j and are represented in the figures. For the helical 

shift, such figures denounce a relevant difference between the two torque fractions, which are 

proportional to the areas enclosed by the diagrams and the axis F'p = 0 and may be also negative for 

the half-pulley with a higher angular speed: the fixed one during the opening phase and the sliding 

one during the closing phase. 

The torque fraction Ms /M absorbed by the sliding half-pulley depends on the design parameter 

2r∞Fztanα /M, i. e. on the axial-to-traction force ratio r∞ Fz /M, on the tension level and on the shift 

speed. Figure 8 shows the results from the solution of a large number of shift cases and may be used 

to build practical regression formulas. For M → ∞, the belt-pulley contact tends to the gross slip 

condition, where γs ≅ γf  ≅ ±π /2, Ms /M ≅ 1/2 and M ≅ 2fr∞Fz / cosα. The starting point on the left of 

all plots of Fig. 8 has thus the coordinates sinα /f and 0.5 and one may try to put ln|(Ms/M) − 0.5| = 

mln|2r∞Fstanα /M − sinα /f| + n. The first regression constant turns out to be m ≅ 1.5 for all 

diagrams, while the second one, n, is different for the opening and closing phases. It is found that 

exp(n) is roughly a linear function of the ratio ρ /εout, whence 

( )ραα
ε

ρ
sgn

sintan2

2

1
2/3

out








−








+−≅ ∞

fM

Fr
ba

M

M zs  (11)

where a and b are different for the pulley opening and closing (ρ < 0 and ρ > 0). 

 

 

3. Analytical Approximations and Design Formulas 

 

As regards the driver pulley, the approximate model is similar to [8], but with the further 

simplification of prolonging the linear trend of the penetration x beyond the adhesive/adhesive-like 

sub-region, to include also the downstream main sliding region. The matching of the analytical 

curves with the numerical ones remains very good, as shown by the small circles of Figs. 4 and 5. 

On the contrary, the helical relative sliding between the driven half-pulleys requires some major 

changes with respect to [8] and the following model is found to be very suitable for this purpose. 

The numerical plots for the driven pulleys indicate that the main inner region of contact may be 

roughly split into a preceding adhesive-like sub-region and a following main sliding sub-region. In 

the former sub-region, the value of the penetration angle χ is just close to ρ, although showing a 

very slightly increasing trend toward upstream. As the plot of the radial penetration x appears 

roughly linear, an attempt at a simple approximation for x(θ) can be tried putting x'(θ) ≅ constant = 
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3ρ /2 for the closing phase (ρ > 0) and x'(θ) ≅ constant = ρ /2 for the opening phase (ρ < 0). 

Actually, this assumption yields a fairly good fit with the numerical diagrams in the adhesive-like 

sub-region, because the shift parameter ρ is usually quite small and a slight inaccuracy of the model 

cannot compromise the overall matching with the full solution. 

As regards the following main sliding sub-region, the tendency of the sliding angles to become 

nearly equal on approaching the exit (γf ≅ γs ≅ γout) is firstly recognizable, as can be also deduced by 

Eq. (3) observing that tanχ becomes significantly larger than |ρ| and |1 − Ω|. Moreover, the 

tendency of the penetration-to-elongation ratio x /εd and of the gradient ratio dx/dεd to nearly the 

same "asymptotic" value is observable: dxout/dεd,out → xout /εd,out → constant = p. Then, focusing on 

the final point of the main sliding region, it is possible to get =− out
22 sinsin1 γα  

( ) ( )kxkxf dd −+ εαεαγ tantancos out  by Eq. (10∼), whence, considering that 0 < γout < π /2 in 

the driven case, one obtains as in [3] 

( )( )( )
( )kp

pkpkf

−
−−−

≅
1cos

11tan1
tan 21

22

out α
α

γ  (12)

Furthermore, replacing the above expression of out
22 sinsin1 γα−  into Eq. (9∼), one gets 

( )( )( )pkpkfdd 21
22

out,out, 11tan1cos −−−≅′ ααεε  (13)

On the other hand, integrating Eq. (4∼) from the entrance of the inner region (subscript …in) to a 

generic θ, observing that uin is very small, using Eqs. (1∼) and (5∼) and neglecting small terms, one 

can obtain x' ≅ ρ + [εd − εd,in + x − xin − ρ (θ − θin)]/tanγf, where xin = εd,in /k1, as observed in the 

remarks about Eq. (10∼). Using then Eq. (12), one has, at the final point of the main sliding region, 

x'out ( ) ( )( )( )pkpkf

k
p

kp dd

d

d

21
22

out,1out,

in,

out,
11tan1

1
11

1cos
−−−

−







+−+

−+≅
α

Θ
ε

ρ
ε
ε

αερ  (14)

where Θ = θout − θin is the inner arc width. 

Dividing Eq. (14) by Eq. (13), putting x'out/ε'd,out = p, it is possible to arrive at an algebraic 

equation for the ratio p, which can be easily solved in dependence on the physical parameters, k, f, 

α, and the drive data, Tin, Tout: 
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( )( )( ) ( )( )( )
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111
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out,
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22

==











−







+−+−−

+−−−−−−−

pF
k

pkp

pkpkfpkpkfp

dd

d

d

Θ
ε

ρ
ε
ε

α
αε

ρα

 (15)

 

The approximate solution for x can be expressed by a simple parabolic form, x = xout + x'out(θ − 

θout) + x"out (θ − θout)
2/2 in the main sliding region, imposing the mentioned final conditions, xout = 

pεd,out, x'out = pε'd,out, and the connection with the upstream adhesive-like solution with the same 

slope x'in = 0.5ρ [2 + sgn(ρ)]. The second derivative x"out and the angular position θcon. of the 

"connection point" between the two sub-regions, are obtainable by the continuity conditions for x 

and x' 



















′−′

−′−
−=

inout

1

in,
inout,

outcon. 2
xx

k
xp d

d
ε

Θε
θθ    x"out = 

con.out

inout

θθ −
′−′ xx

 (16a,b)

The above approximate formulae offer a very fine accordance with the numerical results, as 

observable by the small circles of Figs. 6 and 7. 

The axial thrusts on the driver and driven sides can be easily calculated by the integration of Eq. 

(8), Fz ≅ ∫ arc  wrap
θxdSt , and, using the subscripts R and N for the driver and driven pulleys and the 

subscripts T and S for the tight and slack strands, turn out to be 

( )
( ) ( )[ ]RR

RRtRRbT
Rz k

S

f

vT
F

ρ
Θρ

α
Θµ

sgn12arctantan2 ,1

2
,

2

, −+
+

+
−≅  (17)

( )
( )

( )
( ) lNbT

d

d

lNNi
N

bS
bT

l

NtNNtNNbS
Nz

SxvTp

Sx
k

vT
vTp

S

SSx

f

vT
F

,in
2

out,

out,

2

,n
,1

2
2

,
2

,,in
2

, 3

2

2arctantan2 ′−−
′












′−−−−

+
′

+
+

−=
µ

ε
ε

Θµµ
Θ

α
Θµ (18)

If the operative data of a V-belt variator are the most usual ones, i. e. transmitted torque, speed 

and axial thrust on the driven pulley, one has to associate the torque equation 

TT − TS = 







+

∞∞ N

N

R

R

r

M

r

M

2

1
 (19)

with Eq. (18), eliminate one of the two belt forces, TT and TS, and solve the resulting quadratic 

equation for the other force. Since what is more significant for the calculation of the axial thrust is 
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the whole area under the penetration diagram, rather than the local penetration values, the simple 

model described so far can give a very good accordance with the experimental results, as will be 

shown in the next section, and appears thus sufficiently reliable. 

The overall approximation can be further refined considering the lack of the angle of contact 

due to the belt arching in the free strands, according to the conventional formula ∆Θ = 

( ) 211 ∞+ rSTT fST , where Sf is the belt flexural stiffness. Likewise, also the reduction of the 

axial thrust due to the lower penetration values in the boundary sub-regions could be taken into 

account as in [5] or [8]. Nevertheless, this axial thrust reduction arises from the hypothesis of a 

straight configuration of the free strands and of a gradual curvature increase of the belt from the 

contact boundary points towards the inner arc, and therefore, it is in conflict with the previous belt 

arching hypothesis, which assumes the curvature 1/r∞ at the contact endpoints. As a matter of fact, 

the real free strand condition in a V-belt drive is intermediate between the conventional arching and 

the straight state, but, since both the effects cut down slightly the full axial thrust, it is roughly 

legitimate to account for just one of them, e. g. the reduction ∆Θ, assuming that it includes the 

effect of the lower boundary penetration as well. 

 

 

4  Experimentation 

 

Several experimental tests were carried out on a small power rubber belt variator on the test 

bench of Fig. 9, for various different configurations. 

The input power was provided by a DC electric motor, while a pneumatic disk brake exerted the 

resistant torque. The continuously variable unit was a motorcycle variator and included a 

downstream reduction gear of ratio ≅ 13:1. The unit was connected to the driving shaft through an 

upstream gear with a ratio reciprocal of the downstream gearing, with the purpose of limiting the 

driving motor speed. The stiffness of the various belts used in the tests, in the longitudinal and 

transverse directions, was measured on a material testing machine for tensile/compression 

measurements. The coefficient of friction was estimated separately on the driver and driven pulleys, 

as the plates exhibited different surface finishing. Table 1 reports the data of the characteristic 

parameters of the CVT.  

The speed and torque were measured upstream and downstream of the CVT unit by means of 

two speed-torque meters of the strain-gauge type and the winding radii on both pulleys were 
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measured by laser sensors. All electric signals were channeled to a data acquisition system and 

worked out by a suitable software. 

The axial thrust was calculated through an indirect procedure, by the measure of the winding 

radii and the pre-knowledge of the operative characteristics of the two actuators (see Fig. 1). 

On the driver side, a centrifugal mass system with three rollers adjusted the speed ratio to the 

input speed automatically. The geometrical shape of the roller tracks was detected optically with a 

great accuracy, as described in ref. [10] and resulted nearly circular in practice. Referring to Fig. 1 

and to the list of symbols, using the axial-to-radial displacement ratio 2tanα (shifting half-pulley vs. 

belt), one has 

rR = rR,min. + α
∆
tan2

z
 

 

( ) ( ) 22
0

2
0.min, cot ttfctcc rzzrrrr =−−+−+ ∆β∆∆  

 

0.min,

0cot
tan

tcc

tfc
s rrr

zzr

−+
−−

=
∆

∆β∆
β  

(20a,b,c)

and can calculate the roller position (∆rc, ∆zc) and the contact slope βs(∆rc) in dependence on the 

belt winding radius rR. Then, the roller equilibrium condition yields the axial thrust Fz,R: 

Fz,R ≅ 
( )

sf

ccRc rrm

ββ
∆ω

cotcot
.min,

2

+
+

 (21)

On the driver side, the total axial thrust was [10]: 

FzN  ≅ ( ) δα∆ tan
2

tan2 ,
0 d

M
rKF sN
Nz +−+  (22)

where −2∆rN tanα (> 0) is the spring compression due to the pulley opening and MN,s the driven 

torque fraction absorbed by the sliding half-pulley, whose evaluation was done according to Fig. 8, 

using the mentioned linear regression to correlate the variables. 

The upstream and downstream torques losses and the inertia torques were evaluated running 

each pulley without the belt at constant speed and constant acceleration and were used to correct the 

externally measured torques in working conditions. Moreover, according to Eq. (19), the torque was 

averaged between the driver and driven sides in order to consider the belt inelastic stiffness. 

The experimental evaluation of the axial forces Fz,R and Fz,N on the belt was done, on the basis 

of Eqs. (20-22). One of these forces was chosen as an entry for the theoretical model, and to be 

precise Fz,R, and the calculation of the other axial force (Fz,N) was carried out by the model for 
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comparison purposes. In practice, the axial push FzR was evaluated by Eqs. (20-21), the tight strand 

tension TT by Eq. (17) and then the other tension TS by Eq. (19). Then, the torque fraction MN,s on 

the driven shifting plate and the experimental axial force FzN were quickly derived through Eq. (22) 

and the regression formulas (11), using the following coefficients: aopening = − 0.9, bopening = 0.04, 

aclosing = 1.85, bclosing = 0.03. In parallel, the theoretical value FzN,theory was calculated evaluating p by 

Eq. (15) and using Eqs. (16) and (18). All this calculation included the reduction of the wrap arc 

due to the bending stiffness of the belt. 

Figures 10 to 13 show the experimental diagrams of the radii, speeds, torques and axial forces 

during some shift up and shift down phases, together with the tension level on the tight and slack 

strands and the torque fraction absorbed by the shifting half-pulley on the driven side. 

The theoretical axial thrust on the driven side is reported in all figures and a quite fine 

agreement can be clearly observed between the theory and the experiments. It is noteworthy that 

this concordance is just acceptable despite the many approximations introduced in the model and 

the uncertainty of many physical parameters. Furthermore, due to its relative simplicity, the 

formulary appears quite useful for design purposes when planning the CVT performances. 

 

 

5   Conclusion 

 

The present analysis addresses the mechanical behavior of a very common torque-controlled 

configuration of rubber V-belt variators, where the relative constraint between the sliding and fixed 

half-pulleys on the driven side is realized by helical tracks, so that an increase of the resistant torque 

causes a proportional increase of the axial component of the rail reaction, which in turn strengthen 

the axial push exerted by a loading spring. The purpose of this device is to save the belt wear and 

the power losses when the transmission works at partial load and provide the needed tensioning at 

full load. The mathematical model is different from the axial track case and implies the 

impossibility of partial sub-regions of contact with adhesive conditions. Moreover, the torque is not 

equally shared between the two plates, because of the different sliding conditions of the belt on the 

two side walls, due to the different angular velocities of the half-pulleys. 

An in-depth mathematical model has been developed for these torque-controlled variators, 

considering the elastic penetration of the belt into the groove, consequent to the side compression, 

and the balance of the mass increase inside a fixed elementary dihedral control volume with the 

mass flux through its control surface. The system equations are just complex and strongly non-

linear, so that their numerical solution is rather troublesome. Running several complete numerical 
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solutions and observing the diagrams, some easily calculable closed-form approximations can be 

constructed for the belt radial penetration, which show a fine fit with the full numerical solutions, 

are applicable to a large variety of different cases and provide a fast tool for the design and the 

analysis of rubber V-belt drives. 

Several shift tests were carried out in different conditions on small rubber belt variators 

mounted on an experimental bench and measures of the winding radii, torques and speeds on the 

driver and driven shafts were taken at equally spaced time instants. The instant axial thrust was 

measured indirectly on each pulley, taking into account the preliminary analysis of the operative 

characteristics the two actuators, on the driver and driven sides. The driver actuator was of the 

centrifugal mass type, in order to interlock the motor speed with the speed ratio, while the one on 

the driven side was of the loading spring type for the belt forcing. The axial thrust values, as 

calculated by the theory and given by the experiments, were quite comparable, confirming the 

validity of the theoretical model and the soundness of the closed-form approximations. 
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Table captions 

 

Table 1.  Variator data 
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List of figure captions 

 

Figure 1 a, b Scheme of the actuators on the driver side (a) and driven side (b). 

Figure 2 Interaction between belt and pulley. 
C = center of belt element, ABfBs = pulley meridian plane, CDsDf = plane of 
rotation, ABjDj = planes tangent to pulley walls, BjCDj = planes of sliding. 

Figure 3 Control volume. Triangles of velocities. 

Figure 4 Driver solutions during opening phase. Dots: approximate solutions of Section 3. 
Data: α = 13°, k = 0.115, f = 0.4, εE = 0.001, µvb

2/Sl = 0.0001, ρ = − 0.0002 
Entries: γE = − 175°, χE = − 5.1980906° 

Figure 5 Driver solutions during closing phase. Dots: approximate solutions of Section 3. 
Data: α = 13°, k = 0.115, f = 0.4, εE = 0.001, µvb

2/Sl = 0.0001, ρ = + 0.0002 
Entries: γE = − 174°, χE = − 6.3025879° 

Figure 6 Driven solutions during opening phase. Dots: approximate solutions of Section 3. 
Data: α = 13°, k = 0.115, f = 0.4, εE = 0.001, µvb

2/Sl = 0.0001, ρ = −  0.0002 
Entries: γf,E = − 177°, χE = − 4.9411456° 

Figure 7 Driven solutions during closing phase. Dots: approximate solutions of Section 3. 
Data: α = 13°, k = 0.115, f = 0.4, εE = 0.001, µvb

2/Sl = 0.0001, ρ = + 0.0002 
Entries: γf,E = − 176.5°, χE = − 4.8080541° 

Figure 8 Driven torque fraction on sliding half-pulley vs. axial-to-traction force ratio, in 
dependence on the exit elongation and on the shift speed. 
Data: α = 13°, k = 0.115, f = 0.4, µvb

2/Sl = 0.0001 

Figure 9 Experimental test bench 

Figure 10 Test 1. Shift up. Data: see Table 1 

Figure 11 Test 2. Shift up. Data: see Table 1 

Figure 12 Test 3. Shift down. Data: see Table 1 

Figure 13 Test 4. Shift down. Data: see Table 1 
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belt length 758 mm 

centre distance 255 mm 

belt width w = 16 mm 

unit length mass of belt µ = 0.124 g/mm 

longitudinal stiffness (average) Sl ≅ 60000 N 

axial stiffness (average) St ≅ 15000 N 

flexural stiffness (average) Sf ≅ 12500 N×mm2 

groove angle α = 13 deg 

belt coefficient of friction on driver pulley fR = 0.37 

belt coefficient of friction on driven pulley fN = 0.4 

total centrifugal mass (primary actuator) mc = 42.6 g 

spring stiffness (secondary actuator) K = 4.9 N/mm 

axial pre-load (secondary actuator) Fz0 = 266 N 

angle of helical guides δ = 41 deg 

diameter of helical guides d = 40 mm 

variator power 10 kW and over 

variator speed 9000 rpm 
 

 

 
 
           Table 1 
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