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Abstract

A very common configuration of motorcycle V-beltiatars allows for the correction of the belt
tensioning in dependence on the resistant torquex lspitable helical shape of the tracks that
enable the closure/opening of the driven half-pidleThe theoretical model for the belt-pulley
coupling is just complex for this arrangement, véhene half-pulley may run in advance and the
other is slower than the belt, and requires theegpd numerical solution of a strongly non-linear
differential system by a sort of shooting technjquetil all boundary conditions are fulfilled
(angular contact extent, torque, axial force). Afsolving the full equations, the present study
develops closed-form approximations characterizgar excellent fit with the numerical plots and
proposes a simple and practical formulary for théahthrust in dependence on the torque and the
tension level. Then, results of a theoretical-ekpental comparison are also reported, revealing a

very good agreement of the model with the real ajpen.

List of symbols k =2tanoS/S belt stiffness number
ki =k tan(a + arctaff) / tanr
a, b regression coefficients of Eq. (11) k. = ktan(a - arctar) / tarar
d diameter of helical track [mm] K spring constant of driven actuator [N/mm]
f, fs sliding and static friction coefficients m, nregression parameters for Eq. (11)
fa<fs  adhesion factor m. total centrifugal mass of driver actuator [g]
F, axial thrust [N] M torque [Nm]
Fo spring pre-load on fully closed driven D = Yout /€iout penetration-to-elongation
pulley [N] asymptotic ratio
F'w wall force per unit angle [N] r  radius [mm]
ip  unit vector parallel to belt r radial coordinate of roller center [mm]
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re track radius of driven actuator [mm] ¢ Dbelt velocity angle (Fig. 3)
ro radial coordinate of track center of driver ¢ angular velocity [§]

actuator [mm] Q= wlu speed ratio between sliding and
r. wrap radius for infinite transverse stiffness fixed half-pulleys

of the belt [mm]

S,S  longitudinal and transverse belt gypscriptsand superscripts

stiffness [N] b parallel to belt
S flexural belt stiffness [NmA) con. connection point between sub-regions
t time[s] d dynamical belt force, elongation
T Dbelt force [N] E contact exit endpoint
u dimensionless circumferential componentf  fixed half-pulley
of sliding velocity in initial point of main inner region
v, vstotal and sliding velocities [m/s] n normal to pulley wall

X=(rs —1) Irw dimensionless belt penetration N driven pulley

zo axial coordinate of track center of driver out final point of main inner region
actuator [mm] p peripheral wall force

a groove half-angle R driver pulley

Ls &  actuator track slopes on driver side s sliding half-pulley

¥, % sliding angle (on plane of rotation, on S slack strand
pulley wall) T tight strand

J helical track slope on driven side U upstream point of adhesive region
£=T/S belt longitudinal elongation w pulley wall
6 angular coordinate (.)=4&..)o8
4 belt mass per unit length [g/mm] (L) =)
p =rl(w 0)Or,/(ar M,) shift-to-

peripheral speed ratio

X belt penetration angle (Fig. 3)

1. Introduction

All continuously variable transmissions (CVT) foehicle application alternate up-shift and
down-shift phases of the speed ratio in a typicedlgdom manner in order to comply with the

driving requests. Besides, due to the relatively kfficiency of the variable speed unit, proper
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strategies are requested for reducing or increasieglamping thrust on the pre-forcing pulley in

dependence on the lower or higher resistant toleped. In cases of small power, as for example in
motorcycles, a common full-automatic solution cetssin controlling the speed ratio by centrifugal

masses on the driver side, exerting the closureeftimrough spring loads on the driven side and
enslaving the axial push to the resistant torqueptmper helical tracks between the driven half-
pulleys. The consequence of this kinematical camgtris that the two plates do not rotate

synchronously in shift conditions, but the slidimige is in advance or in retard with respect to the
other, in the closing or opening period respeciivel

While the steady behavior of the belt drives cartdresidered already established [1-6], only a
few theoretical approaches to the shift state neafobnd in the literature (e. g. see [7-12], also f
an overview on other references). Thus, a wide xatal campaign has been carried out by the
authors' team on motorcycle variators and atterapt®rmulating either complete or simplified
practical models for design purposes have beemedaout. Due to the helical arrangement of the
driven half-pulley tracks, the translational clasuheory of [7] has been modified in order to
consider the different sliding conditions of theltben the fixed and movable plates. On the
contrary, the theoretical approach of [7] remaippliaable to the driver pulley and involves the
presence of adhesive or adhesive-like sub-reginsgle the arc of contact, for the closing or
opening phases respectively. Proofs of the existemcnon-existence of these sub-regions were
given in [7], highlighting their characteristicshigh might be referred back, in a remote but strict
connection, to the well-known Grashof's concept aofhesive arc Ruhebogen The one-
dimensional thin belt approach has been appliedsidering the belt as a continuous material
flowing inside a very thin stream tube formed ksyatvn external surface, which is in motion during
the shift. Moreover, any micro-tribological aspettthe belt-pulley contact has been disregarded
due to the need of limiting the complexity of thboke mathematical model.

Getting numerical solutions is quite laboriousddher relative motion of the half-pulleys, axial
or helical, and demands much care because of thegshon-linearity of the system equations, of
their "boundary layer" nature and of their consequaptitude to an unstable numerical trend.
Actually, the present analysis belongs to the aategf "degenerescent” problems, where a small
scale factor multiplies one of the highest derixegi and thus, similarly to other analogous classic
problems, such as e. g. the van der Pol relaxaigmillations or the boundary layer flows, the
solutions are very sensitive to small changes efthundary/initial conditions (see [1], Section 4),
which sensitivity is additionally worsened by theeedimensionality. Furthermore, the numerical
integration, to be carried out for example by sddoage-Kutta routine starting from one of the two

endpoints, must be reiterated by a sort of shootewhnique until all the external boundary
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conditions are fulfilled (wrap arc, applied torgared axial thrust). Therefore, in addition to th# fu
equation solution, a second important objectivetlo$ study is to devise proper closed-form
approximate solutions in order to frame a simpdifiermulary useful for practical purposes, as will
be shown in Section 3.

Hence, as such closed-form solutions permit a ptaalgulation of the main characteristics of
the drive, i. e. the free strand tensions and & forces on the two pulleys, a comparison of the
theory with several experimental results can be edsried out, as reported in Section 4.

2. Comparative Analysis of the Axial and Helical Shift Mechanics

In parallel with the theory of [7], the changes lieg by the helical shift motion of the driven
pulley plates will be specified in the followingigkres 1-3 describe the scheme of the variable
speed drive and show in particular the two actsattre wall force components acting on an
elementary belt segment and a fixed dihedral comstume with the projection on the plane of
rotation of the triangles of velocities on the taides.

The non-dimensional penetration variakke (r.. —r) /r. is scaled by the nominal radiusand,
denoting the partial differentiation with respezt&with primes, the geometrical relationship= -

r tany changes into
X = (1-x)tany - X' Ox (1), (1O

where the tilde notation (L) will henceforth indicate the approximate formtbé homologous
equations (...), neglecting small order terms.

The total time derivative of the radial coordinatea moving belt element can be written as the
sum of a local and a convective temn/dt = r +8r', where dots indicate partial differentiation with
respect to the time t. Sinde/dt = — v sing and 8= v cos//r, one hay sing = v cogptary — r .

Distinguishing the sliding and fixed half-pulleystiwthe subscripts andf respectively, their
angular velocities are equal for the driver pulbey are different for the driven pulley, (see Figs.
and 3),i.ew = w+ Aw= w+ 4rtandtana/d = w (1 + &4 ptandtana/d), where 2 tana is the
axial velocity of the movable half-pulleg,andd/2 are the helical slope and radigss r /(e [©) [

I, /(M) IS the shift-to-peripheral speed ratio, refern@the fixed half-pulley, and one may pait
= Aw = 0 for the driver pulley. Notice thadw is positive or negative for the closing or opening

phasesg > 0 orp < 0) and is quite small, becauysés usually of order 1/1000 or lower, i. e. of the

same order of magnitude of the belt elastic deftiona
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As a consequence of the different angular speedseo$liding and fixed plates, two different
slip angles must be defined, on the pulley wallsand j, : (Fig. 2), and on the plane of rotatiga,
and y (Fig. 3), whence two triangles of velocities can dieserved in Fig. 3, which vyield the
kinematical relationshipg cosyy = axr + v sing/tang andv cosyy = ar + v sing/tany. The above
trajectory equationy sing/ = v cosy tany — r, and the last two kinematical relationships can be

combined into

veogy _ 1-ptanyg 1-ptany; _ Q-ptany,
w; I 1-tanytany; 1-tanytany; 1-tanytany, (2a,b)

whereQ = w/w =1 + &ptanatano/d. For the driver pulley, one hag = w=w, =1, k= =
¥, and observes that, jp =tar y and 1- tany tany# 0, thenv cosyy = ot andv sing/ = 0, i. e.

there is adhesion between the belt and the pullegrefore x’ = (1 — x)p U p along an adhesion
sub-region by Eg. (1). In the case of a drivengyuthn the contrary, no adhesion sub-region may
develop and the relationship between the two gjidingles is obtainable by Eq. (2b)

1- Q +tany; (Qtany - p) 1- Q +tany; (Qy - p)

tany, = = N tanyg U Y- p 3), (3)

Combining the Lagrangian and Eulerian formulatiohthe mass conservation conditiopg] +
£) = constant (Lagrange) ard{ur /cosy)/ot +d(uvcosy/cosy)/d8 =0 (Euler), whereuis the belt

mass per unit lengthg = T/S << 1 is the longitudinal elongation ar@l[N] is the longitudinal

stiffness, and accounting for Egs. (1) and (2ag, iy arrive, as in [7], at the equation
: £ , :
u =(1+U)[m+tan)((1—)()}—p -~ uwbetx-p (4), (40

whereu is the dimensionless circumferential componenthef gliding velocity on the fixed half-

pulley,u = vsssing/(wr) = veosil(wr) — 1 = (tan)(—,o)tanyf /(1—tanyf tan)(), whence

tany; = u tany DL 5
"7 +u)tany-p L (5), (30

Neglecting all the inertia terms smaller than tleatdfugal forces, which are dominant, the
momentum transport theorem can be written in the fi§fT — za2)iy] + F'w 00, whereF', is the
resultant wall force per unit angle of contact amel termzan’i, = (A?coS(x — )iy represents the

momentum flux in the belt direction, which howevwgigenerally much smaller thdnand may be

assumed constant along the belt path. In pradtieghelt forcel may be replaced in the analysis by
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the "dynamic" forcelTg = T -z and the "dynamical” elongatiog = (T - /) /S may be also
introduced.

The above equilibrium equation can be split in divections tangential and normal to the belt
on the plane of rotation. Moreover, introducing be#t compression-to-penetration ratio 2tamd
the belt transverse stiffness per unit length /w, whereh andw are the belt height and width, the
transverse stiffness parame$er 2 tamy E; h .. /w [N] may be defined, which permits expressing
the elementary axial push as a function of theatagliastic penetration by means of a transverse

“"constitutive” equation. Summing up, we have

Sdg = > [sinasiny + f(cosy,jcosa siny + sinj,,jcosy)] dFn; ©
j=f,s
S&(l+x)d8 = > [sinacosy + f(cosy,cosa cosy —sinky,;siny)] dFn; @)
j=f,s
dF, = (cosa - f cosy,sina) dFn ;= (cosa — f cosyy,ssina) dFns= SX{1-x)d6 -
cosy

Minding that tan,; = cosr tany for j = f or s, whence cog,; = sgn(cog) /\/1+ cos atan® y,

= coy /\/l—sinzasinzyj and sing; = coggtanycosa = sinycosa /\/1—sin20/sin2yj,

Equations (8) permit eliminating the elementaryviatcesdF,; and the wall sliding angleg,,
from Eqgs. (6,7)

o= kx{1- x) sin)(tana\/l—sinzasin2 yj +f sin(yj +)() (9)
2tana cosy j=t s \/1—sin2asin2 y; - f tana cosy,
' 0 kx fsinyj
2tana =1 s \/1—sin2asin2 yj — f tanacosy,
kx(l— x) COS)(tana'\/l—sinzafsin2 yi +f cos(y- + )()
X'=-1+ — ‘ (10)
264 1aNa cosy j=t,s \/1—S|n asin” y; — f tanacosy;
P tana\/l—sinzasin2 yj + f cosy,
- 4 “otang 4 02 2 (100
j=f.s| \J1-sin“asin® y; - f tana cosy;

where the dimensionless stiffness number of the kel 2 tarw S/S, has been introduced as in [2-

3]. It is remarkable that Equation (I0eads to the three notable relationshipsyLYkix for y [
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00, 2)eq Okox for y O e Ox77 3) eq Ukxfor y Oy Ox71/2, wherek; = k tan(a + arctar) /tana, k, =
k tan(a — arctar) /tana (ko < 0 usually).

In conclusion, we have collected four differentegjuations, Eqgs. (1), (4), (9), (10), and two
parametric equations, Egs. (3), (5), in the sixaldesx, ¢q, X, U, ¥ and g, the first four of which are
very small (of order11/1000), whilst the sliding angldg| may range between O amd For the
driver pulley of the CVT under examination, we hawve equation less, Eq. (3), and five variables
as a whole, becauge= y= y, Q=1.

As specified in [7], the use of the abridged edreti(..[) is fairly acceptable in the main
internal portion of the arc of contact, but nottire two short boundary regions. Actually, the
differential system "degenerates" from the foudhtte third order, when reduced to its abridged
form, because Eg. (10) changes into the non-diftexkrelationship (10) and one of the boundary
conditions can no longer be fulfilled. Due to thmindary layer” type of the problem, the variables
are expected to change rather smoothly along nfdbkearc of contact and exhibit large gradients
near the boundaries, in order to fulfill the bourydzonditions.

The complete numerical solution has to be calcdlagean initial value problem, separately for
each pulley, starting from one endpoint of the wigdarc, for example the exit poikt where the
transverse compression must be zers Q) and proceeding towards the other endpointreviiee
variablex vanishes again. Three initial conditions mustrgased, forg, x, u (or else, or yin
place ofu), which must be modified by trial and error byatsf shooting technique until three
typical working conditions are fulfilled: contactdth &, traction forcelou: — Tin = S (&out — &iin)

(torque) and axial loaH,, calculable by Eq. (8, = IwraparCS( x(1-x)d@g/cosy O for ap arc 1 Xd0.

The in-depth analysis of [7] for the axial shiftin§the sliding half-pulley (driver side) proves
that an internal adhesive region must develop enctbsing phaseo(> 0) and an adhesive-like one
in the opening phaseo(< 0). In particular, all the previous relationshipgmain valid in the
adhesive sub-region, but considerings a variable adhesion facfgrand yas the anglgs of the
resultant elementary adhesion force in the rotapitame. The adherence limit is reached at the
upstream boundary of the adhesive region, whetd;, fs being the coefficient of static friction. As
tany = p = constant andi = 0 along the adhesive region, Equation (4) giges 0 (constant belt
force), while the integration of Eq. (1) yields,twireference to the upstream endpdihof the
adhesive regions =1 - (1-xy) exp[-p (6 - &), 1. e.xOxy + p (€ — &) andx' U p. Therefore,
the belt path has the shape of a slightly inwaittngplogarithmic spiral, which, since and p are
very small, may be roughly confused with a lingairad of Archimedes, whose radius increases for

fixed @because of the pulley rotation. The axial opemhthpe driver pulley implies on the contrary
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the development of adhesive-like sub-regions witdryvsmall sliding velocities, where the
dynamical elongatiorey and the elastic penetration vary nearly linearly with the angular
coordinate, with the gradiemtsOp /(1 +k;) andey Okio /(1 +k;) (see [7], Sect. 4).

Of course, in the helical shift case (driven pulleiie development of an adhesive region must
be excluded priori, due to the different velocities of the pulley isain the two sides of the belt.

By way of example, Figures 4 to 7 report numeriedults for the four possible working
conditions of a pulley: driver/driven, opening/dlag While the dimensionless shift speednd
the centrifugal forcea” were fixed and the initial values of the variablesand e (or simply je
for the driver pulley), were imposed at the cont&agat pointE, the third initial valueye, which must
be negative because the belt emerges from the graeas adjusted by an iterative procedure in
order to reach a pre-fixed wrap width. In gendtal noteworthy that: 1) a decrease of the exit be
anglexe (< 0) produces an increase of the contact widihalgreat care must be put in avoiding an
excessive decrease, which may lead to unaccepmahlgons with diverging penetration; 2) small
increases of the exit sliding angje:= (or J£), which must be very close tbrin order to get
acceptable solutions, tend to transform the publelyavior from driven to idler and then to driver;
3) an increase of the exit elongatigqE produces an increase of the axial thrust.

The four figures show that the belt angfeis rather small, save in the short seating and
unseating regions, where relatively large negagnaglientsy’ are also observable, due to the need
of attaining the endpoint condition 1y+= 0 (zero curvature) according with Eq. (10). Thelialj
angle y keeps close to 0 angrin such boundary regions, where then the belt e@nsemain
approximately constant, and moreover, whihows a smooth connection in the passage from the
seating region to the main inner region of contdds subject to a sharp variation in the passage
from the main region to the unseating region. Tloeeg in the search for approximate solutions
valid in the main inner region of contact, one npay & i, U kiXin at its beginning (subscript i),
but a similar relationship cannot be written at émal (subscript ...g). Notice that the subscripts
(...in) @and (..ouy Of the present treatment refer to the endpoifiti@ main inner region, excluding
the small boundary sub-regions of seating and dimggaand do not indicate the whole contact
endpoints, wherg = 0.

A new aspect, original with respect to the axiadish, appears now considering the helical
relative sliding. Due to the different angular spee@nd the different sliding conditions on the two
plates, the whole transmitted torqi¥e is no longer equally shared between them because t
elementary tangential wall forces are not equal m&y even have opposite directions in some

portion of the arc of contact, as appears on tlegrdms of Figs. 6 and 7. The peripheral
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components$', of the wall forces per unit angle of contact, ba bne and the other plate, can be
obtained by Eq. (8), multiplyindF,; by fsiny,; and are represented in the figures. For the helica
shift, such figures denounce a relevant differebetwveen the two torque fractions, which are
proportional to the areas enclosed by the diagemshe axi$', = 0and may be also negative for
the half-pulley with a higher angular speed: thxedi one during the opening phase and the sliding
one during the closing phase.

The torque fractioMs/M absorbed by the sliding half-pulley depends ondiégign parameter
2r.Fana /M, i. e. on the axial-to-traction force ratigF, /M, on the tension level and on the shift
speed. Figure 8 shows the results from the soluti@large number of shift cases and may be used
to build practical regression formulas. Rdr - o, the belt-pulley contact tends to the gross slip
condition, whergg O ¢ Ox77/2, Ms/M 01/2 andM [ 2fr.F,/ cosa. The starting point on the left of
all plots of Fig. 8 has thus the coordinatesrsiinand 0.5 and one may try to put M{(M) — 0.5| =
min|2r.Fdana /M - sina /f| + n. The first regression constant turns out tonbel 1.5 for all
diagrams, while the second ome,is different for the opening and closing phasess found that

exp() is roughly a linear function of the ratw/&.;, whence

. \3/2
%Dl— aP +p 2roF,tana _sina sgr{p) (11)
M 2 Eout M f

wherea andb are different for the pulley opening and closipg(0 ando > 0).

3. Analytical Approximationsand Design Formulas

As regards the driver pulley, the approximate madesimilar to [8], but with the further
simplification of prolonging the linear trend ofetipenetratiorx beyond the adhesive/adhesive-like
sub-region, to include also the downstream maidirgji region. The matching of the analytical
curves with the numerical ones remains very gosghawn by the small circles of Figs. 4 and 5.

On the contrary, the helical relative sliding betweéhe driven half-pulleys requires some major
changes with respect to [8] and the following madébund to be very suitable for this purpose.

The numerical plots for the driven pulleys indicHtat the main inner region of contact may be
roughly split into a preceding adhesive-like sugiwa and a following main sliding sub-region. In
the former sub-region, the value of the penetratingle y is just close tqo, although showing a
very slightly increasing trend toward upstream. tAe plot of the radial penetration appears

roughly linear, an attempt at a simple approximatar x(6) can be tried putting'(6) [J constant =
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3p /2 for the closing phaseo(> 0) andx'(6) [ constant =p /2 for the opening phase < 0).
Actually, this assumption yields a fairly good \itth the numerical diagrams in the adhesive-like
sub-region, because the shift paramgter usually quite small and a slight inaccuracyha model
cannot compromise the overall matching with thédalution.

As regards the following main sliding sub-regidme tendency of the sliding angles to become
nearly equal on approaching the eytl{ )¢ O you) is firstly recognizable, as can be also deduged b
Eq. (3) observing that tgnbecomes significantly larger thdp| and |1 — {]. Moreover, the
tendency of the penetration-to-elongation rati@y and of the gradient ratidx'dgy to nearly the

same "asymptotic" value is observalde;,/d&s out — Xout/&0ut —» CONStant 5p. Then, focusing on

the final point of the main sliding region, it isogsible to get \/1—sinzasin2 Yout =
f cosy,, (kx'tana + &4 tana)/(e4 —kx) by Eq. (1@), whence, considering that 0 g < 77/2 in

the driven case, one obtains as in [3]

\/(1— f 2 tan? anlp—l)(l— kop) (12)

H
aNYout cosa(1-kp)

Furthermore, replacing the above expressiodbilE sin® a'sin? Yout INto EQ. (2), one gets

£ out D& ourCOSTY (1— f 2 tan? anl p-1)1-k,p) (13

On the other hand, integrating EqLJ4rom the entrance of the inner region (subscrig{) to a
genericg, observing thati, is very smallusing Egs. (I) and (%) and neglecting small terms, one
can obtairx' 0 p + [& = &in + X = Xn — p (€ — &n)]/tany, wherexin = &n /ki, as observed in the
remarks about Eq. (I9. Using then Eq. (12), one has, at the final pofrthe main sliding region,

1+ p- €d,in (“1]_ P
gd,out k1 gd,out (14}

\/(1— f 2 tan? anlp -1)1-k,p)

where®@ = @, — 4, is the inner arc width.

Xout 00+ &g ourc0sa(1-kp)

Dividing Eq. (14) by Eq. (13), putting'ou/Edqout = P, it IS possible to arrive at an algebraic
equation for the ratip, which can be easily solved in dependence on liysigal parameters, f,

a, and the drive datd;,, Tout
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p(l— f 2 tan? a)(klp—l)(l— Ky p)—L\/(l— f 2 tan? anlp—l)(l— ko p) +

gd,out cosa
e (1 (15
~(1-kp) 1+ p- din (1+—]— P o =F(p)=0
gd,out k1 gd,out

The approximate solution forcan be expressed by a simple parabolic form Xyt + X'ouf( @ —
B + X"out (6 — G)?/2 in the main sliding region, imposing the menédrfinal conditionsxou: =
P&iout Xout = PEdous and the connection with the upstream adhesivediddution with the same
slopeX'in = 0.50 [2 + sgnf)]. The second derivativg",,: and the angular positioB.o,. of the
"connection point" between the two sub-regions, abinable by the continuity conditions for

andx'

Ed.i

r ,In

pgd,out_xina_ k o
1 Xll —_ XOUt X|n

, , out— —— -~

(16a,b
Xout ~ Xin 0out - Hcon.

Hcon. =0Oput ~ 2

The above approximate formulae offer a very fineoagdance with the numerical results, as
observable by the small circles of Figs. 6 and 7.

The axial thrusts on the driver and driven sideslmaeasily calculated by the integration of Eq.

(8),F. O]

wrap arc

Sxdd, and, using the subscriggandN for the driver and driven pulleys and the

subscriptsT andSfor the tight and slack strands, turn out to be

2 2
(TT - Vg )@R + PRS ROR (17)

F,r O
2R " 2tan(a +arctanf)  2+kq g[1-sgr{og)]

2
T —,uvg ,

' D(TT—,leg)— S0 -y ,NONS:I
(TS_,UVS)@N + Xin,NSt,N@l%l +28t,N|: klN "

=N " 2tan(a +arctanf) 2 39 p ot

(18)

(TT _Wg)_xi'n,NS

gd,out
If the operative data of a V-belt variator are thest usual ones, i. e. transmitted torque, speed

and axial thrust on the driven pulley, one hasstpaiate the torque equation

TT—TSZ%(%+—MNJ (19)

with Eq. (18), eliminate one of the two belt forcé&s,and Ts, and solve the resulting quadratic

equation for the other force. Since what is mogaificant for the calculation of the axial thrust i
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the whole area under the penetration diagram, rékiae the local penetration values, the simple
model described so far can give a very good acoorlavith the experimental results, as will be
shown in the next section, and appears thus seffiigi reliable.

The overall approximation can be further refinedsidering the lack of the angle of contact

due to the belt arching in the free strands, adogrdo the conventional formul2l®@ =

(]/\/ﬁ +]7/\/i),lsf /rof , WhereS is the belt flexural stiffness. Likewise, also tleeluction of the

axial thrust due to the lower penetration valueshim boundary sub-regions could be taken into
account as in [5] or [8]. Nevertheless, this axialust reduction arises from the hypothesis of a
straight configuration of the free strands and afradual curvature increase of the belt from the
contact boundary points towards the inner arc,taedefore, it is in conflict with the previous belt
arching hypothesis, which assumes the curvatugeat/the contact endpoints. As a matter of fact,
the real free strand condition in a V-belt driventermediate between the conventional arching and
the straight state, but, since both the effectsdowtn slightly the full axial thrust, it is roughly
legitimate to account for just one of them, e.lge teductiond®, assuming that it includes the

effect of the lower boundary penetration as well.

4 Experimentation

Several experimental tests were carried out on @lgpower rubber belt variator on the test
bench of Fig. 9, for various different configuraitso

The input power was provided by a DC electric motdrile a pneumatic disk brake exerted the
resistant torque. The continuously variable unitswa motorcycle variator and included a
downstream reduction gear of rafiol3:1. The unit was connected to the driving stiaftugh an
upstream gear with a ratio reciprocal of the doveash gearing, with the purpose of limiting the
driving motor speed. The stiffness of the varioe#tused in the tests, in the longitudinal and
transverse directions, was measured on a mateg&ting machine for tensile/compression
measurements. The coefficient of friction was eated separately on the driver and driven pulleys,
as the plates exhibited different surface finishigble 1 reports the data of the characteristic
parameters of the CVT.

The speed and torque were measured upstream antsteam of the CVT unit by means of

two speed-torque meters of the strain-gauge tymkthe winding radii on both pulleys were
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measured by laser sensors. All electric signalevedranneled to a data acquisition system and
worked out by a suitable software.

The axial thrust was calculated through an indigrcicedure, by the measure of the winding
radii and the pre-knowledge of the operative charastics of the two actuators (see Fig. 1).

On the driver side, a centrifugal mass system thitbe rollers adjusted the speed ratio to the
input speed automatically. The geometrical shapefoller tracks was detected optically with a
great accuracy, as described in ref. [10] and teduiearly circular in practice. Referring to Flg.
and to the list of symbols, using the axial-to-ghdiisplacement ratio 2tan(shifting half-pulley vs.

belt), one has

(R = Frin, +—22
RTRM otara
(rc,min. +A4re - rtO)2 + (Arc cotBs —zg _AZ)Z = rt2 (20a,b,c

Ar.cotfs —zo— Az

tang; =
° Ic,min. +Arc —To

and can calculate the roller positiofir{, 4z;) and the contact slop@(4r.) in dependence on the

belt winding radiusg. Then, the roller equilibrium condition yields tagial thrust, g

mcwl-%(rc,min T Arc)

F.rO 21
*R=7 cotB; +cotf, (2L
On the driver side, the total axial thrust was [10]
2My
Fon O F,q + K(-24ry tana) + tand (22,

where-24ry tana (> 0) is the spring compression due to the pudpgning andVy s the driven
torque fraction absorbed by the sliding half-pullefnose evaluation was done according to Fig. 8,
using the mentioned linear regression to correlete/ariables.

The upstream and downstream torques losses anadhe@itorques were evaluated running
each pulley without the belt at constant speedcandtant acceleration and were used to correct the
externally measured torques in working conditidviereover, according to Eq. (19), the torque was
averaged between the driver and driven sides ierdodconsider the belt inelastic stiffness.

The experimental evaluation of the axial forégg andF,y on the belt was done, on the basis
of Egs. (20-22). One of these forces was chosemamty for the theoretical model, and to be

preciseF,r, and the calculation of the other axial forégy) was carried out by the model for
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comparison purposes. In practice, the axial puyglwas evaluated by Eqgs. (20-21), the tight strand
tensionTt by Eq. (17) and then the other tensigyby Eq. (19). Then, the torque fractidhy s on

the driven shifting plate and the experimental lefaece F,n were quickly derived through Eg. (22)
and the regression formulas (11), using the follmmoefficients:agpening= — 0.9, Dopening= 0.04,
aclosing = 1.85,bei0sing= 0.03.1n parallel, the theoretical valu@nneoryWas calculated evaluatimgoy

Eq. (15) and using Egs. (16) and (18). All thiscoddtion included the reduction of the wrap arc
due to the bending stiffness of the belt.

Figures 10 to 13 show the experimental diagranthefradii, speeds, torques and axial forces
during some shift up and shift down phases, togeilid the tension level on the tight and slack
strands and the torque fraction absorbed by tHerghhalf-pulley on the driven side.

The theoretical axial thrust on the driven sidereported in all figures and a quite fine
agreement can be clearly observed between theytlagat the experiments. It is noteworthy that
this concordance is just acceptable despite theyrapproximations introduced in the model and
the uncertainty of many physical parameters. Fumbee, due to its relative simplicity, the

formulary appears quite useful for design purpegesn planning the CVT performances.

5 Conclusion

The present analysis addresses the mechanical ibelwdva very common torque-controlled
configuration of rubber V-belt variators, where tietative constraint between the sliding and fixed
half-pulleys on the driven side is realized by talitracks, so that an increase of the resistagtiéo
causes a proportional increase of the axial compowiethe rail reaction, which in turn strengthen
the axial push exerted by a loading spring. The@se of this device is to save the belt wear and
the power losses when the transmission works aiapayad and provide the needed tensioning at
full load. The mathematical model is different frothe axial track case and implies the
impossibility of partial sub-regions of contact wédhesive conditions. Moreover, the torque is not
equally shared between the two plates, becaudeedlitferent sliding conditions of the belt on the
two side walls, due to the different angular veiesi of the half-pulleys.

An in-depth mathematical model has been developediiese torque-controlled variators,
considering the elastic penetration of the belb e groove, consequent to the side compression,
and the balance of the mass increase inside a &ladentary dihedral control volume with the
mass flux through its control surface. The systema@ons are just complex and strongly non-

linear, so that their numerical solution is rattrelublesome. Running several complete numerical

F. Sorge, paper MD-10-1318, PDF file 14



solutions and observing the diagrams, some eaallyulable closed-form approximations can be
constructed for the belt radial penetration, whstlow a fine fit with the full numerical solutions,
are applicable to a large variety of different caaed provide a fast tool for the design and the
analysis of rubber V-belt drives.

Several shift tests were carried out in differepnditions on small rubber belt variators
mounted on an experimental bench and measures ofitiding radii, torques and speeds on the
driver and driven shafts were taken at equally spaanme instants. The instant axial thrust was
measured indirectly on each pulley, taking intooat the preliminary analysis of the operative
characteristics the two actuators, on the drivet dnven sides. The driver actuator was of the
centrifugal mass type, in order to interlock thetonspeed with the speed ratio, while the one on
the driven side was of the loading spring type tfog belt forcing. The axial thrust values, as
calculated by the theory and given by the expertsjewere quite comparable, confirming the

validity of the theoretical model and the soundridbe closed-form approximations.
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Table captions

Table 1. Variator data

F. Sorge, paper MD-10-1318, PDF file 17



List of figure captions

Figurela, b Scheme of the actuators on the dsider(a) and driven side (b).

Figure 2 Interaction between belt and pulley.
C = center of belt elemen®ABBs = pulley meridian planeCDD; = plane of
rotation,ABD; = planes tangent to pulley walBCD; = planes of sliding.

Figure 3 Control volume. Triangles of velocities.

Figure 4 Driver solutions during opening phase.sDapproximate solutions of Section 3.
Data:a = 13°,k = 0.115,f = 0.4, & = 0.001,/m,%/S = 0.0001,0= —0.0002
Entries: e = —175°, g = —5.1980906°

Figure 5 Driver solutions during closing phase. Dapproximate solutions of Section 3.
Data:a = 13°,k = 0.115,f = 0.4, & = 0.001 /%S = 0.0001,0= + 0.0002
Entries: e = —174°, xg = —6.3025879°

Figure 6 Driven solutions during opening phase.sDapproximate solutions of Section 3.
Data:a = 13°,k = 0.115,f = 0.4, & = 0.001/m,%/S = 0.0001,0= - 0.0002
Entries: e = —-177°, e = —4.9411456°

Figure 7 Driven solutions during closing phase. Datpproximate solutions of Section 3.
Data:a = 13°,k = 0.115,f = 0.4, & = 0.001 .m,%/S = 0.0001 0= + 0.0002
Entries: e = —176.5° xg = —4.8080541°

Figure 8 Driven torque fraction on sliding half-lgyl vs. axial-to-traction force ratio, in
dependence on the exit elongation and on the ghekd.
Data:a = 13°,k = 0.115,f = 0.4, zam/S = 0.0001

Figure 9 Experimental test bench

Figure 10 Test 1. Shift up. Data: see Table 1
Figure 11 Test 2. Shift up. Data: see Table 1
Figure 12 Test 3. Shift down. Data: see Table 1
Figure 13 Test 4. Shift down. Data: see Table 1
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belt length 758 mm
centre distance 255 mm
belt width w =16 mm
unit length mass of belt L =0.124 g/mm
longitudinal stiffness (average) S 060000 N
axial stiffness (average) S 015000 N
flexural stiffness (average) S 012500 Nemn?
groove angle a =13 deg
belt coefficient of friction on driver pulley | fr=0.37
belt coefficient of friction on driven pulley | fy = 0.4
total centrifugal mass (primary actuator) | m;=42.6 g
spring stiffness (secondary actuator) K=4.9 N/mm
axial pre-load (secondary actuator) Fo=266N
angle of helical guides 0=41deg
diameter of helical guides d =40 mm
variator power 10 kW and over
variator speed 9000 rpm
Table 1
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