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Most of the undesired whirling motions of rotating machines can be efficiently reduced

by supporting journal boxes elastically and controlling their movement by viscous

dampers or by dry friction surfaces normal to the shaft axis, which rub against the

frame. In the case of dry dampers, resonance ranges of the floating support

friction surfaces. On the contrary, the dry friction contact must change automatically

into sliding conditions when the fixed support resonances are to be feared. Moreover,

the whirl amplitude can be restrained throughout the speed range by a proper choice of

the suspension-to-shaft stiffness ratio and of the support-to-rotor mass ratio.

This theoretical research deals firstly with the natural precession speeds and looks

for Campbell plots in dependence on the shaft angular speed, for several rotor-

suspension systems. Then, the steady response to unbalance is investigated, in terms of

rotor and support orbits and of conical path of the rotor axis. In this search, the ranges of

adhesive or sliding contact are identified in particular for system with dry friction

damping. At last, the destabilizing influence of the shaft hysteresis in the supercritical

regime is focalized and the counterbalancing effect of the other dissipative sources is

verified. In the nonlinear case of dry friction dampers, the control of linear stability is

fulfilled by a perturbation procedure, checking the magnitude of Floquet characteristic

multipliers on the complex plane. Moreover, the nonlinear stability far from steady

motion is tested by the direct numerical solution of the full motion equations. The

comparison configuration of suspension systems with viscous dampers and no dry

friction is examined through an analytical first approximation approach and closed-

form results for stability thresholds are derived in particular for the symmetric case.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

It is known that very noxious whirling motions may arise in a rotor-shaft-support system on approaching critical
flexural speeds, and a great deal of previous studies have been focusing on this technical problem and on the strategies to
face it. For example, annular motion-limiting stops or squeeze-film dampers may restrain the whirling motions, or else
compliant supports may improve the frequency response, though increasing the number of critical speeds. Flexible-
damped supports have been widely proposed (see for example [1–4]), taking advantage of a behaviour more or less similar
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Nomenclature

A flexibility matrix
c1,3,4 (N s/m), c2 (N s m), ch (N s/m) translative, rotative,

and hysteretic coefficients of damping
d1,3,4, d2, dh translative, rotative, and hysteretic damp-

ing factors
D damping matrix
e (m) rotor eccentricity
EI (Nm2) shaft flexural stiffness
Fh (N) hysteretic force on rotor
h (N/m) hysteresis constant
H hysteresis matrix
jd, ja (kg m2) diametral and axial moment of inertia of

rotor
Jd= jd/(ml2), Ja= ja/(ml2) dimensionless diametral and

axial moment of inertia of rotor
k (N/m) reference shaft stiffness
k3, k4 (N/m) suspension stiffness
K stiffness matrix
K3=k3/k, K4=k4/k dimensionless suspension stiffness
l (m) shaft length
L3=�z3/l, L4=z4/l dimensionless distances of rotor from

supports
m (kg) rotor mass
m3, m4 (kg) support mass
M mass matrix
M3=m3/m, M4=m4/m dimensionless support mass
R1, R2, R3, R4 dimensionless steady amplitudes of rotor

path (1), tilt (2), and of support paths (3,4)
~U; ~V speed perturbation vectors
vrel (m/s)relative velocity vector

W(y) complex displacement-rotation vector
W0 complex amplitude vector
x, y, z, x0, y0, z0 (m) coordinates in non-rotating

references
X, Y displacement-rotation vectors
Z complex impedance matrix
G=mg/(ek) dimensionless gravity field
dj perturbation of dj, scaled by dh

y=ot angular time variable
l perturbation of On, scaled by dh

x, Z, z, x0, Z0, z0 (m) coordinates in rotating references
s (=1 or 0) sliding or adhesion indicator
j, c small rotation angles around x and y due to

shaft bending
/, /adh (N) sliding and adhesion friction forces
F=f/(ek), Fadh=fadh/(ek) dimensionless sliding and

adhesion friction forces
F̂adh complex dimensionless adhesion force
o (s�1) angular speed
oc=k/m (s�1) reference critical speed
O=o/oc dimensionless angular speed
On=on/oc dimensionless whirling speed of natural

mode
Subscripts and superscripts
1 rotor centre displacement
2 rotor tilt
3 back support displacement
4 front support displacement
(y)(c) cofactor
(y)0, (y)00 first, second derivative with respect to y
� perturbation variable
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to viscous-dynamic vibration absorbers. Nevertheless, such additional sources of dissipation remain active and absorb
power also at the nominal operating point, even far from the critical speeds.

Previous analyses of the authors have developed the idea of suspending the journal boxes on elastic supports and
providing them with suitable dry friction surfaces orthogonal to the shaft axis, which rub against the frame and have the
task of damping the critical whirling motion [5,6]. The wear compensation of the sliding surfaces can be made in practice
automatic by installing suitable spring devices to load the friction pads (e.g. Belleville washers, which may keep the closure
force nearly constant when properly designed). Systems of this type have been patented in the past [7,8], but an in-depth
analysis has not yet been carried out so far.

This suspension configuration operates most efficiently if the adhesive state is planned for an extended portion of the
speed range, including the usual working condition of the rotating machine, while the sliding conditions are allowed to
start spontaneously and quench the whirling motions when approaching the critical speeds of the fixed-support system.
The dry friction dampers behave thus similarly to automatic clutches, which either lock or release the connection between
the journal boxes and the frame depending on the rotational speed, and do not produce a relevant increase of power
dissipation or heat production as a whole, because the operating point lies in the adhesive range, where the friction devices
are stuck and the supports motionless. These results can be obtained by a careful choice of the dry friction level, of the
suspension-to-shaft stiffness ratio, and of the support-to-rotor mass ratio.

On the other hand, a rather significant drawback of rotating machinery is the trend for unstable whirling conditions in
the range above the first critical speed, because of the shaft structural friction associated with material hysteresis [9,10].
More broadly, Ref. [11] classifies circulatory systems with non-conservative positional forces (e.g. of hysteretic origin) and
non-dissipative systems with gyroscopic terms, showing how their marginal stability may be destroyed when all effects
are present together (see [11] also for a survey on the literature). These undesired phenomena may be counteracted by
other dissipative sources and may be dealt with by introducing an equivalent coefficient of viscous damping, dependent on
the whirling frequency, and imposing that the hysteretic force is given by the product of this coefficient and the rotor
centre velocity relative to a reference frame rotating with the shaft end section. This permits calculation of the influence of
hysteresis on the gravitational equilibrium configuration and on the overall system response in the speed range.
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The stability conditions in the presence of hysteresis and of other dissipative sources may be analyzed by applying the
small perturbation approach to the steady motion. If the system behaviour is nonlinear due to the dry friction forces, the
slightly perturbed motion equations come out to contain time-varying periodic coefficients, whence the Floquet approach
has to be used, checking the magnitude of the Floquet characteristic multipliers. Furthermore, the nonlinear stability far
from the steady solutions can be ascertained by the direct numerical solution of the motion equations, e.g. by some Runge–
Kutta routine. The result is that the dry friction on the supports produces a strong stabilizing effect and, in case of linear
instability, yields non-periodic trajectories that are very close to the steady orbits. In the linear case of viscous dampers, the
perturbation approach produces simpler formulas that can be handled for the calculation of the stability threshold.

2. Outline of the mathematical model

2.1. Equations of motion

The mathematical model is similar to that in [6] and will be briefly described here. The dry friction forces on the
suspension induce a strong nonlinearity because of their continuous self-aligning in opposition to the variable direction of
the instantaneous sliding velocity. Nevertheless, steady circular solutions may be obtained in closed form for axisymmetric
stiffness of the shaft and the supports. The whirling paths become elliptical for anisotropic suspension elasticity [12],
which complicates their calculation remarkably.

Fig. 1 shows a scheme of the rotor-suspension system, including viscous and dry friction dampers. The mass centre C is
eccentric with respect to the intersection O1 of the shaft line with the rotor cross-section. The translating frame Cxyz

remains parallel to the fixed reference Ox0y0z0, while the tilting frame CxZz does not take part in the main rotating motion
with angular speed o, but performs only small elastic rotations j and c around the axes x and y, due to the shaft bending.
The gravitational field g is counter-directed with respect to the y-axis.

The translational and rotational motions of the rotor are supposed to be affected by some external environmental
dissipation and then the viscous equivalent coefficients c1 and c2 are introduced, assuming that the correspondent resistant
force and moment are proportional to the translating and tilting velocities of the rotor, respectively. Likewise, the
coefficients c3 and c4 are used to describe some possible viscous damping on the back and front supports.

Introducing a reference stiffness k of the shaft (e.g. k=48EI/l3 for self-aligning bearings) and a reference natural speed
oc ¼

ffiffiffiffiffiffiffiffiffiffi
k=m

p
, the dimensionless ratios O=o/oc, M3=m3/m, M4=m4/m, K3=k3/k, K4=k4/k, and the damping factors

d1,3,4=0.5c1,3,4oc/k and d2=0.5c2oc/(kl2) are defined. The gravity influence is expressed by means of the dimensionless
gravity parameter G=mg/(ek).

The shaft hysteresis produces an internal resistant force, which acts on the rotor in opposition to the relative velocity
vrel of point O1 with respect to a reference frame O3x0Z0z0 rotating with the shaft angular speed o around the z0-axis,
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Fig. 1. Scheme of rotating machine with exploded view of back support and frame. The front frame is not represented in the figure. Detail: reference

system rotating with end sections.
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where z0 passes through the centres of the shaft end sections (see Detail in Fig. 1). In the case of a shaft on two supports,
indicating with L3=�z3/l and L4=z4/l the dimensionless distances of the rotor from the shaft ends, the components of vrel in
the fixed reference Ox0y0z0 are vrel;x ¼ _x1� _x3L4� _x4L3þoðy1�y3L4�y4L3Þ and vrel;y ¼ _y1� _y3L4� _y4L3�oðx1�x3L4�x4L3Þ. The
hysteresis force on the rotor is expressed by the product of this velocity and a hysteretic coefficient ch: Fh=�chvrel, while
the forces on the supports are F3h=�L4Fh, F4h=�L3Fh.

Considering a weighty, horizontal, perfectly balanced rotor in steady motion, the equilibrium deflection plane is
motionless but counter-rotates with the angular speed �o with respect to the rotating frame O3x0Z0z0 of Fig. 1. Thus,
assuming that the hysteretic work is proportional to the cycle area, i.e. that the integral

ch

I
ðv2

rel;xþv2
rel;yÞdt¼ cho

I
½ðy1�L4y3�L3y4Þ

2
þðx1�L4x3�L3x4Þ

2
�dy

is proportional to the square of the path radius of point O1 in the rotating frame O3x0Z0z0, one concludes that the product
h=cho may be considered as independent of o. Therefore, h can be defined as the hysteresis constant of the shaft material
and a constant hysteretic factor dh=0.5h/k may be also introduced. When some unbalance is added to the rotor, either
static or dynamic, a further shaft deflection is superimposed, on a plane that rotates together with the shaft at the same
angular speed o, so that this new deflection is uninfluential on the hysteretic work.

When analyzing perturbations of the steady motion in order to check the system stability, all perturbed motions should
be considered affected by different hysteretic coefficients chi=h/|oi�o|, inversely proportional to their relative angular
speed [10], but this approach would be scarcely productive for nonlinear systems with dry friction, like the present one.
Therefore, when applying the small perturbation approach, very small deviations from the main deformation of the shaft
will be assumed and the changes of the viscous-equivalent coefficient ch=h/o will be neglected in the calculation of the
hysteretic force.

The amplitudes of the dry friction forces /3 and /4 are constant and their components in the xy-plane are given by

�fjxj
0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
02
j þy

02
j

q
and �fjyj

0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
02
j þy

02
j

q
(for j=3, 4). If one or both supports are sticking, the sliding force /j must be replaced

by the adhesive force /adh,j, which must balance the other forces acting on the support.
All displacements are scaled by the rotor eccentricity e, all rotations by e/l, all forces by ke, and all moments by kel. Then,

the dimensionless displacement-rotation vectors X={X1, X2, X3, X4}T and Y={Y1, Y2, Y3, Y4}T are introduced, where Xj=xj/e,
Yj=yj/e, for ja2, and Xj=cl/e, Yj=�jl/e, for j=2. The minus sign before the rotation j is intentionally chosen in order to use
the same stiffness and flexibility matrices on both the bending planes, xz and yz.

Considering all the forces and moments, the motion equations may be written in the form

KXþ2ODX0 þ2HðX0 þYÞþO2MX00 þO2GY0 þ

�O2 cosy
0

s3F3X3
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
02
3 þY

02
3

q þð1�s3ÞFadh;3;x

s4F4X4
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
02
4 þY

02
4

q þð1�s4ÞFadh;4;x

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼ 0

KYþ2ODY0 þ2HðY0�XÞþO2MY00�O2GX0 þ

�O2 sin yþG
0

s3F3Y3
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
02
3 þY

02
3

q þð1�s3ÞFadh;3;yþGM3

s4F4Y4
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
02
4 þY

02
4

q þð1�s4ÞFadh;4;yþGM4

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼ 0 (1x,y)

where Fj=fj/(ke), Fadh,j=fadh,j/(ke), the numbers sj indicate the sliding (sj=1) or adhesive (sj=0) states of the dry friction
surfaces, D, M, and G are diagonal and are the damping, massive, and gyroscopic matrices, whose coefficients are (d1, d2, d3,
d4), (1, Jd, M3, M4), and (0, Ja, 0, 0) respectively, Jd and Ja being the dimensionless diametral and axial moment of inertia of
the rotor. Moreover, K and H are the symmetric matrices of stiffness and hysteresis, and are given by

K¼
1

16L3
3L3

4

1�3L3L4 c2L3L4ðL3�L4Þ �L3
4 �L3

3

c2L3L4ðL3�L4Þ c22L2
3L2

4 c2L3L3
4 �c2L4L3

3

�L3
4 c2L3L3

4 16L3
3L3

4K3þL3
4 0

�L3
3 �c2L4L3

3 0 16L3
3L3

4K4þL3
3

2
66664

3
77775 (2)
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H¼ dh

1 0 �L4 �L3

0 0 0 0

�L4 0 L2
4 L3L4

�L3 0 L3L4 L2
3

2
66664

3
77775 (3)

where c2=c22=1 for a hinged–hinged shaft, while c2=1/2, c22=1/3 for a clamped–clamped shaft. Notice that for a cantilever
shaft, for example clamped at the support 3 and carrying the rotor at the free end 4, all the above vectors and matrices
become three-dimensional.

2.2. Equilibrium configuration and complex dynamical formulation

The constant part of the solution, i.e. the central equilibrium configuration of the rotor, can be easily obtained by Eq. (1),
though this solution is not unique in theory in the case of adhesion between the friction surfaces. In fact, different vectors
Xequil and Yequil can be obtained by varying the adhesive force Fadh,j, provided that the adhesion limit is not reached.
Nevertheless, as the sliding/adhesive friction force must remain continuous in the sliding/adhesive transition when varying
the rotor speed, the equilibrium position can be considered unique and is given by

Xequil ¼ 2GAHðKþ4HAHÞ�1
f1;0;M3;M4g

T; Yequil ¼�GðKþ4HAHÞ�1
f1;0;M3;M4g

T (4x,y)

where A=K�1 is the flexibility matrix. Since Xequila0, the well known static bias due to hysteresis is observable and, as the
changes of Yequil consequent to hysteresis are small of order dh

2 by Eq. (4y), while Xequil is of order dh by Eq. (4x), the
hysteretic equilibrium position appears slightly displaced in the horizontal direction in the sense of the rotation. Anyway,
in the following calculations, the vectors X and Y will be assumed deflated of their constant content (4) for simplicity, in
order to focus better on the dynamical behaviour.

As the suspension stiffness is isotropic, all the system motions are circularly polarized and the dynamic part of
Eqs. (1x,y) can be further compacted multiplying Eqs. (1y) by the unit imaginary number i, summing them to Eqs. (1x) and
putting W=X+iY, Ûadh;j ¼Fadh;j;xþ iFadh;j;y:

KWþ2ODW0 þ2HðW0�iWÞþO2MW00�iO2GW0 þ

�O2 exp ðiyÞ
0

s3F3 exp ði arg W3
0 Þþð1�s3ÞF̂adh;3

s4F4 exp ði arg W4
0 Þþð1�s4ÞF̂adh;4

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼ 0 (5)

The uniqueness of the solution of Eq. (5) was proved in [6] in the absence of hysteresis (dh=0) by assuming the existence
of two different periodic solutions ad absurdum and ascertaining their necessary coincidence through an integration
process over a common period. The stability of this solution was also proved defining a suitable positive-definite Lyapunov
function. Nevertheless, in the presence of hysteresis the stability proof fails and unstable supercritical conditions may
indeed arise.

2.3. Natural precession modes

The natural precession modes are to be considered in an ideal non-dissipative autonomous condition, where the
matrices D and H vanish together with the gravitational-unbalance force vector. Using the complex notation
W=W0 exp(iOny/O), where On=on/oc is a dimensionless precession speed and the subscript 0 denotes a constant
amplitude vector, we get

½K�O2
nðM�GO=On�W0 ¼ Z0ðO;OnÞW0 ¼ 0-detðZ0Þ ¼ 0 (6)

where the ideal dynamic matrix Z0(O, On) is a function of the rotor speed and of the precession speed. Should we put
W=X� iY and subtract Eqs. (1y), multiplied by i, from Eqs. (1x), we would find the same precession equation, except for a
plus sign in front of the gyroscopic term G. Therefore, we would get opposite characteristic roots On with an opposite
vector Y, so that the natural whirling motions would be the same. Using the main notation W=X+iY, the precession motions
turn out to be progressive or retrograde for On40 or Ono0 respectively, as can be deduced by calculating the dimensionless
moment of the whirl velocity vector with respect to the z0 axis of Fig. 1: {[(W0jr cosb�W0ji sinb)ix+(W0jr sinb+

W0ji cosb)iy]� [�On(W0jr sinb+W0ji cosb)ix+On(W0jr cosb�W0ji sinb)iy]}�iz=OnðW2
0jrþW2

0jiÞ, where W0jr and W0ji are the
real and imaginary parts of W0j, b=Ony/O, and the i’s are unit vectors. It is remarkable that in some special cases, for example
with considerable anisotropy in the support stiffness, the precession of one of the supports or of the rotor axis may be
counter-directed with respect to the rotor whirl for the same On (see [12]).
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Eq. (6) yields an eight degree characteristic polynomial in On, whose coefficients are functions of O. Putting I= Jd� JaO/On

for brevity and indicating the cofactors with the superscript (c), one gets ðK22�IO2
nÞZ
ðcÞ
0;22þK12ZðcÞ0;12þK32ZðcÞ0;32þK42ZðcÞ0;42 ¼ 0, i.e.

O8
n� K11þ

K22

I
þ

K33

M3
þ

K44

M4

� �
O6

nþ
K33K44

M3M4
þ

K22K44�K2
24

IM4
þ

K22K33�K2
23

IM3
þ

K11K22�K2
12

I

�

þ
K11K44�K2

14

M4
þ

K11K33�K2
13

M3

�
O4

n�
K ðcÞ11

IM3M4
þ

K ðcÞ22

M3M4
þ

K ðcÞ33

IM4
þ

K ðcÞ44

IM3

 !
O2

nþ
detðKÞ

IM3M4
¼ 0 (6b)

The roots of Eq. (6b) give the forward and backward precession speeds, for On40 and Ono0, respectively and can be traced
on Campbell diagrams On(O), symmetric with respect to the origin. Fig. 2 shows two example cases, for an oblong and an oblate
ellipsoid of inertia of the rotor, and eight branches of the locus are visible on each diagram. The locus has an asymptote with slope
Ja/Jd and seven other horizontal asymptotes, given by On=0 and by the roots of the equation ZðcÞ0;22 ¼ 0, which is cubic in O2

n. The
critical angular speeds, On=7O, are identified by the intersection of the locus with the bisectors of the axes, where the minus sign
refers to the critical retrograde precession (see Ref. [13]). Considering direct and retrograde precession motions altogether, we
have eight or seven critical speeds for Ja/Jdo1 or Ja/Jd41, respectively (oblong or oblate ellipsoid of inertia of the rotor).

3. Steady whirling motions

The steady circular solutions can be calculated putting W=W0 exp(iy), where W0 is a complex amplitude vector.
Observing that all hysteretic terms vanish, because the derivatives of W are given by W(n)= inW, Eq. (5) is transformable
into

½Kþ2iOD�O2
ðM�GÞ�W0 ¼ ðZ0þ2iODÞW0 ¼ ZW0 ¼

O2

0

�is3F3 expðiargW0;3Þ�ð1�s3ÞFadh;3

�is4F4 exp ðiargW0;4Þ�ð1�s4ÞFadh;4

8>>>><
>>>>:

9>>>>=
>>>>;

(7)

where Z is the complex impedance matrix of the dynamical system, Z0=Z0(O, O) is its real non-viscous part (see Eq. (6) in
Section 2.3.), and the terms � isjFj and �Fadh;jð1�sjÞ give the complex amplitudes of the sliding and adhesion forces.

The coefficients of the matrix Z are real and symmetric in all the off-diagonal places, due to the diagonal nature of
matrix D, so that, indicating with i, j, k, l a generic combination without repetition of the subscripts 1, 2, 3, 4, the cofactors
and the determinant of Z can be separated into their real and imaginary parts:

ZðcÞii ¼ ZðcÞ0;ii�4O2
X

jakal

djdkZ0;llþ2iO½
X

jakal

djðZ0;kkZ0;ll�Z2
0;lkÞ�4O2djdkdl�

zðcÞij ¼ ZðcÞ0;ij�4O2 dk dlZ0;ij�2iO½dkðZ0;ijZ0;ll�Z0;ilZ0;jlÞþdlðZ0;ijZ0;kk�Z0;ikZ0;jkÞ�

detðZÞ ¼ detðZ0Þ�4O2
X

iajakal

di djðZ0;kkZ0;ll�Z2
0;klÞþ16O4 d1d2d3d4þ2iO½

X
i

diZ
ðcÞ
0;ii�4O2

X
iajakal

di dj dkZ0;ll� (8)
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Then, carrying out the inversion of the matrix Z, Z�1
¼ ½ZðcÞij �

T=detðZÞ, it is possible to solve for W0, i.e. W0 ¼

Z�1
fO2;0;�is3F3 exp ði arg W0;3Þ�ð1�s3ÞF̂adh;3;�is4F4 expði arg W0;4Þ�ð1�s4ÞF̂adh;4g

T and calculate the moduli Rj and
the arguments gj of its components W0,j=Rj exp(� igj). Here the Rj are the orbital radii of the rotor and the supports for ja2,
while R2 is the angular amplitude of the rotor axis cone. If there is adhesion between the friction surfaces of any one of the
two supports (sj=0), the sliding term � iFj exp(� igj) must be replaced by the adhesive term �F̂adh;j, with unknown
argument and modulus. Nevertheless, the addition of an extra unknown is compensated by the vanishing of the radius Rj.
More generally, it is convenient to replace the exponential term exp(� igj) with a complex friction number N̂ j, whose
modulus and argument are 1 and �gj for Rj40, but are both unknown for Rj=0, in which case jN̂ jj becomes equal to the
ratio of the adhesive force to the sliding force.

The solution can be written down in the form

R1 expð�ig1Þ ¼ c10�ic13N̂3�ic14N̂4

R2 expð�ig2Þ ¼ c20�ic23N̂3�ic24N̂4

R3 expð�ig3Þ ¼ c30�ic33N̂3�ic34N̂4

R4 expð�ig4Þ ¼ c40�ic43N̂3�ic44N̂4 (9a2d)

where the coefficients cij=cij,r+icij,i are complex in general, but become real in the absence of viscous dissipation (cij,i=0 for D�0).
Fixing the rotor angular speed, the solution procedure is similar to [6], as summarised hereafter. Assuming firstly

sliding conditions for both the journal boxes, one puts N̂ j ¼ exp ð�igjÞ and solves Eqs. (9) for the eight quantities Rj

and gj. If no couple of real positive roots can be found for R3 and R4, one or both the journal boxes are stuck and
new solutions are sought in the hypothesis of adhesion of the one or the other support. Therefore, one puts either
R3=0 or R4=0 and calculates the correspondent complex number, N̂3 or N̂4, together with the orbital radius, R4 or R3,
of the other sliding support. If a positive radius of any one of the two supports cannot yet be found when the other is assumed
stuck, there are stick conditions on both of them and the numbers N̂ jare calculated by putting R3=R4=0. It must be said that,
if two possible whirling motions happen to be found, the one with sticking/sliding conditions of the supports 3/4, and the
other of the supports 4/3, the solution giving a continuous transition from the sliding to the stick state has to be chosen.

Furthermore, on the basis of the above procedure, an optimization process may be carried out for the mechanical
characteristics of the support system and for the level of the dry friction forces, in order to minimize the whirling
motions in the most proper manner. In practice, fixing the system parameters and some specific weights for the orbital
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amplitudes of the rotor and the supports, the optimization may aim at minimizing the maximum value of their weighted
average throughout the speed range by varying the dry friction level. The optimization process may be carried out
numerically, varying the two parameters F3 and F4 gradually, spanning the speed range at each step, estimating the
maximum weighted average of the orbital radii, and reducing the step size when this average approaches a minimum value.

Figs. 3a–d show the optimized speed responses of the rotor (R1, R2) and the supports (R3, R4) for an example case with a
hinged–hinged shaft and no viscous damping. The rotor response in the two cases of fixed–fixed and floating–floating
journal boxes are also shown (i.e. for Fj-N and Fj-0, respectively). It is possible to appreciate the good efficiency of the
dry friction dampers in cutting all critical speeds, by either getting into or getting off the adhesive state, and in restraining
the whirl amplitude in the remaining range. Figs. 3c and d show also the adhesive force level in the stuck range.

The dry friction damper behaviour is thus similar to that of automatic clutches controlled by the shaft speed, which
block the journal boxes when some critical speed of the floating-support system is expected and release them when the
critical speeds of the fixed-support configuration are being approached.

4. Nonlinear stability

The stability of the steady motion can be tested by the small perturbation approach, assuming that a small perturbation,
consisting of the vectors ~X and ~Y , is superimposed on the steady solution, here indicated without any over-sign. One gets
by Eqs. (9), for full sliding of both supports,

K ~Xþ2OD ~X 0 þ2Hð ~X0 þ ~YÞþO2
ðM ~X 00 þG ~Y 0Þþ

0

0

F3
X3
0 þ ~X 3

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX3
0 þ ~X 3
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2
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X
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02
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0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼ 0 (10x)

K ~Yþ2OD ~Y 0 þ2Hð ~Y 0� ~XÞþO2
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¼ 0 (10y)

If one of the supports happens to be motionless in stuck conditions, the correspondent static friction term is unknown, but
the orbital amplitude vanishes and the mathematical problem remains consistent. If both journal boxes are blocked, the
system becomes linear and the stability may be controlled by the conventional Routh–Hurwitz procedure.

As we are just considering small perturbations, the nonlinear friction terms of Eqs. (10) may be approximated by the
linear expressions:

Fj

Yj
0 ðYj
0 ~X j
0 �Xj

0 ~Y j
0 Þ

ðX
02
j þY

02
j Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
02
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02
j

q in ð10xÞ and Fj

Xj
0 ðXj
0 ~Y j
0 �Yj

0 ~X j
0 Þ

ðX
02
j þY

02
j Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
02
j þY

02
j

q in ð10yÞ

where considering the results of the previous section, Xj and Yj are the real and imaginary parts of Wj. The 4+4 equations
of the differential system (10x,y) can be transformed into the following canonical form, where some coefficients are variable and
p-periodic:

~X0 ¼ ~U

~Y 0 ¼ ~V

~U 0 ¼ �
M�1

O2
K ~Xþ2OD ~Uþ2Hð ~Uþ ~YÞþO2G ~Vþ

0

0
F3

R3
½ ~U3 cos2ðy�g3Þþ

~V 3 sinðy�g3Þcosðy�g3Þ�

F4

R4
½ ~U4 cos2ðy�g4Þþ

~V 4 sinðy�g4Þcosðy�g4Þ�

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

2
66666664

3
77777775
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~V 0 ¼ �
M�1

O2
K ~Yþ2OD ~Vþ2Hð ~U� ~XÞ�O2G ~Uþ

0

0
F3

R3
½ ~V 3 sin2

ðy�g3Þþ
~U3 sinðy�g3Þ cos ðy�g3Þ�

F4

R4
½ ~V 4 sin2

ðy�g4Þþ
~U4 sin ðy�g4Þ cos ðy�g4Þ�

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

2
66666664

3
77777775

(11)

Due to the periodicity of the coefficients, the Floquet theory must be applied to ascertain the stable or unstable nature
of the perturbed motion [14]. For this purpose, one has to firstly calculate the 16�16 fundamental matrix solution H(y), so
that H(0) is equal to the identity matrix I, and this task can be fulfilled by some routine of the Euler–Cauchy or Runge–
Kutta type. Then, the characteristic multipliers must be extracted, i.e. the eigenvalues of H(y) after one period p, through
the 16th degree algebraic characteristic equation EcðlÞ ¼ det½HðpÞ�lI� ¼ l16

þb1l
15
þ � � � þb15lþb16 ¼ 0. Stability requires

all the characteristic multipliers to be smaller than one in modulus.
If one support, say j, is stuck to the frame due to an adhesive state of its friction surfaces, all the terms of the

correspondent rows ðXj
0-; Yj

0-; Uj
0-; Vj

0-Þ and columns (Xjk, Yjk, Ujk, Vjk) of H(p) are replaced by zeroes, so that a

factor l4 arises artificially in the characteristic equation, EcðlÞ ¼ l4
ðl12
þb1l

11
þ � � �Þ. This factor is uninfluential on the

system stability as point l=0 is just the centre at the unitary circle in the Argand plane. If both supports are stuck,
the differential system reduces to the constant coefficient form and the Routh–Hurwitz criterion is sufficient to check the
system stability. All these occurrences can be automatically controlled by the computational procedure.

The coefficients bj of the characteristic polynomial Ec can be calculated by a collocation-type method, on obtaining the
matrix Hp=H(p). The first and last coefficients, b1=� Tr(Hp) and b16=det(Hp), are firstly calculated and then the other 14
bj are obtainable by choosing 7 distinct numbers n, e.g. n=1, 2, 3, 4, 5, 6, 7, and writing

b2n14þb3n13þ � � � þb14n2þb15n¼�detðHpÞþTrðHpÞn
15�n16þEcðnÞ (12a)

b2n14�b3n13þ � � � þb14n2�b15n¼�detðHpÞ�TrðHpÞn
15�n16þEcð�nÞ (12b)

Summing and subtracting the 7+7 equations, Eqs. (12), one gets two algebraic systems, for the even and odd
coefficients separately:

b2n14þb4n12þ � � � þb14n2 ¼�detðHpÞ�n16þ
EcðnÞþEcð�nÞ

2
(13a)

b3n13þb5n11þ � � � þb15n¼ TrðHpÞn
15þ

EcðnÞ�Ecð�nÞ

2
(13b)

where the right hands are to be considered as known terms because the determinants Ec(n) and Ec(�n) are easily
calculable by common numerical routines.

Actually, on obtaining the polynomial Ec(l), there is no practical need to calculate its roots, but it is sufficient to verify that
they lie inside the unit circle of the complex plane of Gauss–Argand, taking into account that Ec(l)=(l�l1)(l � l2)
(l�l3)y(l�l16) can be thought of as the product of 16 complex vectors (l�lj). Letting the variable l move counter-
clockwise along the unit circle, where l=exp(if), starting from the real axis (f=0) and reaching the starting position
again at the end of one complete turn (f=2p), the argument of its ‘‘conformal image’’ Ec(if) changes by 16 times 2p if all the
roots lj remain on the left of this path; otherwise it performs a lesser number of turns when some roots lie outside the unit
circle. Relying on these considerations, the numerical check of stability requires just a short time on a common PC and
moreover, the process may be re-iterated, changing some mechanical characteristic, for example until the stability threshold is
identified.

As an example, Figs. 4a and b refer to the optimized rotor-shaft system described by Fig. 3. The viscous damping level
needed to assure stable rotating motion is shown in Fig. 4a, together with the steady responses of the supports and their
changes with respect to the undamped system. The corresponding steady response of the rotor and its changes due to the
damping are shown in Fig. 4b. The undamped response is represented by thin lines in Figs. 4a and b. Only small changes of
the response curves can be observed, so that the undamped steady analysis of Section 3 can be applied with a sufficient
approximation also for small damping levels. The value of the viscous damping factor is assumed identical for the rotor and
the supports (d) and is here scaled by the hysteresis factor dh. The thin curve d/dh of Fig. 4a refers to the fixed support
configuration and points out that some viscous damping is needed above the first critical speed. As observable, just a small
amount of damping is required, but this amount is largely reduced on average in the sliding range of the supports, due to
the dry friction dissipation.

Figs. 5a and b show diagrams analogous to Fig. 4, but for a non-optimized system with a quite larger dry friction level.
The sliding ranges of the journal boxes are much narrower and are in the close neighbourhood of critical speeds of the fixed
support system. The rotor response exhibits larger orbital radii on average, in comparison with the optimized case of Fig. 4,
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and no practical advantage is likely to be expected with regard to the stabilization of the hysteretic whirl, as the high speed
range provides stuck conditions for both cases.

On the contrary, Figs. 6a and b consider the case of lower dry friction forces, where more prominent resonance peaks
can be observed. Nevertheless, the hysteretic whirl instability is well counteracted by the sliding state of the dry friction
surface in the supercritical range.

Comparing Figs. 4–6, it is possible to see that the best restriction of the steady amplitude can be obtained on average by
the optimization process, where the orbital radius and the half-conicity reach roughly the value 2 at most (Fig. 4b). A
higher friction level eliminates the critical speeds as well, but gives higher resonant peaks (Fig. 5). On the contrary, a lower
level may maintain the supports always in sliding conditions, to the advantage of stability, but cannot cut the critical
speeds of the floating support configuration (Fig. 6).

The sliding or stuck conditions of the supports in the high speed range can be easily detected by the formulas of
Section 3. Assuming dissipation only due to dry friction and considering the dominant terms of the impedance matrix Z0 of
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Eq. (7) for O-N, Eqs. (9c,d) can be found to reduce to the simple form

R3 expð�ig3Þ ¼
�K31þ iF3N̂3þ iF4N̂3

K31K14ðJd�JaÞþK32K24

M4ðJd�JaÞ

h i
M3ðJd�JaÞ

R4 expð�ig4Þ ¼
�K41þ iF3N̂3

K41K13ðJd�JaÞþK42K23

M4ðJd�JaÞ

h i
þ iF4N̂4

M4ðJd�JaÞ
(14a,b)

Proceeding as in Section 3, it is possible to find that the sliding conditions of the one or the other support, or the
simultaneous sliding of both of them, imply

R2
j ¼

1�ð16L3
j FjÞ

2

ð16L3
j MjO

2
Þ
2

(15)
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whence Rja0 for O-N only if 16L3
j Fjo1. Clearly, for F3=F4, the support farther from the rotor is the first one that will

stick to the frame on increasing the dry friction level. Then, if L3o1/2, the dry friction stabilization of the supercritical
hysteretic whirl can be obtained if at least F3o1/(16L3

3). Nevertheless, it is to be recalled that the supercritical operation
with sliding surfaces is somehow detrimental in terms of power dissipation and wear, so that an overall comparative
analysis with the viscous damping should be advisable.

At this point an important consideration is appropriate. As the above approach refers to just small perturbation of the main
motion and considers only linear stability, nothing can be concluded about nonlinear stability, where the effects of the dry
friction forces become relevant. Moreover, in the case of sticking supports, the instability of the steady motion leads necessarily
to release the adhesive contact between the friction surfaces and the arising sliding forces have a strong stabilising influence.

The nonlinear stability can be properly inspected by the direct numerical solution of the differential system, for
example by some Runge–Kutta routine, starting from random initial conditions and proceeding as far as a large number of
cycles are completed (100 or more). In this manner, the important result is obtainable that the unstable whirling motion
does not lead at all to divergent conditions, as could be predicted by the linear analysis, but simply to a sort of small
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wobbling of the trajectories in the very close neighbourhood of their steady circular attractors. This asymptotic behaviour
is clearly visible in Fig. 7a, which refers to an unstable linear solution, while Fig. 7b shows the steady state reached after a
large number of turns, starting from stable initial condition.

Summing up, the dry friction dampers are found to exert a very important quenching effect on the small unstable
motions that may arise throughout the speed range, in the sense that these motions are limited to a very small wandering
of the trajectories in the close neighbourhood of the steady circular paths. Nevertheless, as pointed out above, if the
operative conditions of the rotor-shaft-support system are planned for the adhesive supercritical regime, such trembling
motion of the support might not be convenient, due to the increase of wear and heat production. It should be checked if it
is better to achieve the stabilization by other external dissipative sources— a comparison between the two form of
dissipation, dry and viscous, can suggest the solution to be preferred.

5. Stabilization by viscous dampers

The product cho has been assumed constant in the previous analysis because the main straining motion of the shaft is a
rotation with speed �o of the equilibrium deflection plane relative to the rotating frame O3x0Z0z0. Therefore, making the
hypothesis of very small changes of the shaft deflection line, the hysteresis coefficient ch has been assumed independent of
the perturbation.

In the case of a vertical shaft on the contrary, or when the rotor weight is negligible with respect to the elastic and
inertia force (G51), or when the perturbations are large, all natural whirling modes arise spontaneously with their own
precession speeds and, following [10], different hysteretic coefficients must be taken into consideration. These coefficients
must be assumed inversely proportional to the angular relative speed with respect to the frame O3x0Z0z0 and must be
written in the form ch=h/|on�o|, where on indicates the absolute speed of any single precession. Though this new model
complicates the analysis of the system stability enormously, a linear approach may lead to very interesting results for a
suspension system subject only to viscous dissipation and not to dry friction. Moreover, as reported in Ref. [12], the
stability analysis can be extended to cases with anisotropic suspension systems, with different stiffness characteristics in
the two deflection planes of the shaft, by a proper modification of the system equations.

As the system is linear in the absence of dry friction, Eq. (5) applies also to the perturbed motions after cancelling the
unbalance terms and replacing dh with h/(2k|On/O�1|) in Eq. (3). Putting W=W0 expðiy ~O=OÞ, where W0 is a constant
vector and ~O ¼ ~o=oc denotes one of the perturbation characteristic numbers, Eq. (5) can be written in the form

Kþ2i ~ODþ2iH

~O
O�1
� �
On

O �1
�� �� � ~O2

M�G
O
~O

� �2
4

3
5W0 ¼ ZW0 ¼ 0 (16)

which still permits ascribing the scalar factor dh=0.5h/k to the matrix H, as in Eq. (3).
The perturbed precession modes are obtainable by equating to zero the determinant of Eq. (16) and turn out to be stable

if the imaginary part of ~O is positive. For D=H=0, these speeds would be equal to the previous natural speeds in Section
2.3, ~O ¼On, progressive for On40 or retrograde for Ono0. In the presence of dissipation on the contrary, the search for the
characteristic numbers is just tricky, but simple approximate solutions can be obtained through the hypothesis that the
viscous and hysteretic factors are quite small, as generally occurs in all practical situations, so that the dissipative
precession speeds differ very little from the non-dissipative ideal system. Assuming then dh ð51Þ as a small reference
parameter, one may put ~O ¼Onþdhl; dj ¼ dhdj, where l and dj are of order one.
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Neglecting terms of order d2
h , the matrix Z of Eq. (16) changes to
Zffi

K11þ2idh d1Onþsgn
On

O
�1

� �� 	
�O2

n 1þ
2dhl
On

� �
K12

K21 K22þ2idhd2On�JdO
2
n 1þ

2dhl
On

� �
þOOnJa 1þ

dhl
On

� �

K31�2dhL4 sgn
On

O
�1

� �
K32

K41�2dhL3 sgn
On

O
�1

� �
K42

2
66666666666664

K13�2dhL4 sgn
On

O
�1

� �
K14�2dhL3 sgn

On

O
�1

� �
K23 K24

K33þ2idh d3OnþL2
4 sgn

On

O
�1

� �� 	
�M3O

2
n 1þ

2dhl
On

� �
2dhL3L4 sgn

On

O
�1

� �

2dhL3L4 sgn
On

O
�1

� �
K44þ2idh d4OnþL2

3 sgn
On

O
�1

� �� 	
�M4O

2
n 1þ

2dhl
On

� �

3
77777777775

(17)
Eq. (17) appears in the form Z=Z0+dhZ1, where Z0 is the same as in Section 2.3 and its determinant is zero because the
numbers On refer to the ideal whirling modes.

Continuing the neglect of all terms of order d2
h or higher, the vanishing of det(Z) implies in practice equating to zero the

sum of the products of the single terms of Z1 with their correspondent cofactors in the matrix Z0, which are here indicated
by ZðcÞ0;ij. Therefore

ilOn ZðcÞ0;11þZðcÞ0;22 Jd�
O

2On
Ja

� �
þZðcÞ0;33M3þZðcÞ0;44M4

� 	
þOn½Z

ðcÞ
0;11d1þZðcÞ0;22d2þZðcÞ0;33d3þZðcÞ0;44d4�þsgn

On

O
�1

� �
½ZðcÞ0;11

þ2L3L4ZðcÞ0;34þZðcÞ0;33L2
4þZðcÞ0;44L2

3�2ðZðcÞ0;13L4þZðcÞ0;14L3Þ� ¼ 0 (18)

Here l appears to be a pure imaginary number to a first approximation, so that the real quantity il must be negative for
whirling motion stability. Moreover, an important though expected result is that the stability of precession motion
strongly depends on whether the rotor speed O is higher or lower than the natural speed On.

As an example, Fig. 8 shows the results obtainable by Eq. (18) for each of the eight precession motions. The equality
of all viscous damping factors was supposed in the analysis and the stability threshold was defined as the minimum
ω /ωc

d 
/d

h
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Fig. 8. Viscous damping needed to counteract the hysteresis destabilizing effect for various precession motions of a system without dry friction. Data:

K3=K4=1, M3=M4=0.5, Jd=0.15, Ja=0.1, d1=d2=d3=d4, L3=0.3. Subscripts 1, 2, 3, and 4 refer to the critical speeds, subscripts p and r refer to the progressive

and retrograde precession speeds.



ARTICLE IN PRESS

F. Sorge, M. Cammalleri / Journal of Sound and Vibration 329 (2010) 1686–17011700
viscous-to-hysteretic damping ratio needed for stability. Clearly, when the minimum viscous damping needed to contrast
the hysteretic instability comes out to be negative for some precession motion, this motion is certainly stable under the
action of the hysteresis force alone.

The stability threshold of Fig. 8, where the viscous dampers are active and no dry friction is present, seems to be lower
than in the stuck region of Figs. 4–6, where we have a complementary situation. Nevertheless, considering the larger
number of damping sources present in the system of Fig. 8, the overall power dissipation may be regarded as being roughly
the same.

The progressive critical speeds are also indicated in the diagram and it is remarkable that, for any one of them, an
abrupt change of stability threshold occurs for the corresponding mode, due to the change of sign of On/O�1.

Considering the symmetric case, L3=L4=0.5, K3=K4=Ks, M3=M4=Ms, d3=d4=ds, and putting w1 ¼ 1�O2
n; w2 ¼

0:25�O2
nðJd�JaO=OnÞ; andws ¼ Ksþ0:5�MsO2

n for brevity, the characteristic equation for On can be found to be

ð1�O2
nÞ Ksþ

1

2
�MsO2

n

� �
�

1

2

� 	
1

4
�JdO

2
nþ JaOOn

� �
Ksþ

1

2
�MsO2

n

� �
�

1

8

� 	
¼ w1ws�

1

2

� �
w2ws�

1

8

� �
¼ 0 (19)

Here, the first factor, w1ws�1/2=0, gives the cylindrical modes and the second one, w2ws�1/8=0, the conical modes.
Then, calculating the cofactors of matrix Z0, Eq. (18) becomes

ilOn ws w2ws�
1

8

� �
þws w1ws�

1

2

� �
Jd�

O
2On

Ja

� �
þ2Ms w1w2ws�

w2

4
�
w1

16

� �� 	

þOn ws w2ws�
1

8

� �
d1þws w1ws�

1

2

� �
d2þ2ds w1w2ws�

w2

4
�
w1

16

� �� 	

þsgn
On

O
�1

� �
ws w2ws�

1

8

� �
þ

1

2

w2

4
�
w1

16

� �
þ

1

2
w1w2ws�

w2

4
�
w1

16

� �
� w2ws�

1

8

� �� 	
¼ 0 (20)

where each value On implies the vanishing of either (w1ws�1/2) or (w2ws�1/8).
For the cylindrical modes, we must put ws=1/(2w1) into Eq. (20), which may be found to reduce to

ilð1þ2Msw2
1Þþðd1þ2dsw2

1ÞþO
3
n sgn

On

O
�1

� �
¼ 0 (21)

It is thus observable that each retrograde precession (Ono0) is certainly stable, even without viscous damping, while
the progressive motions (On40) are stable in the whole speed range 0oOoN if the condition ðd1þ2dsw2

1Þ4O3
n is

satisfied. Notice the system instability in the supercritical range in the absence of viscous dissipation.
For the conical modes, we must put ws=1/(8w2) into Eq. (20), which changes to

il Jd�
O

2On
Jaþ8Msw2

2

� �
þd2þ8w2

2ds ¼ 0 (22)

Considering that Jd� JaO/(2On)=0.5½Jdþð0:25�w2Þ=O
2
n� by the definition of w2 and that w2=1/(8ws) by the characteristic

equation, Eq. (19), the factor of il inside the brackets of Eq. (22) may be transformed, after some algebra, into
0.5Jdþ½KsþMsO2

nþ2ðKs�MsO2
nÞ

2
�=ð16w2

s O
2
nÞ and turns out to be always positive, whence all conical motions are stable.

6. Conclusion

The problem of hysteretic whirl instability in rotating machinery has to be solved by different approaches depending on
linearity or nonlinearity of the system physical characteristics. For example, in the hypothesis of floating journal boxes
with dry friction surfaces, planned to damp the critical speeds, the stability of periodic solutions with respect to small
perturbations requires application of the Floquet theory, which implies the numerical calculation of the fundamental
solution matrix, and the control that the characteristic multipliers are confined within the unitary circle of the Gauss–
Argand plane. On the other hand, the nonlinear stability of rotor-shaft-bearing systems subject to dry friction in the
supports requires numerical solution of the full equations. In the case of linear system with viscous damping, simpler
straightforward procedures can be followed, leading to closed form results. The present analysis focused on these
alternative methods and developed several applicative examples.
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