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SUMMARY. The undesired whirl of rotating machineancbe reduced by elastic journal box
suspension systems equipped with dry friction daspEhe critical speeds can be cut off by the
adhesion of the friction surfaces and the whirl Biogge can be restrained throughout the
remaining sliding range by a proper choice of thepgnsion-to-shaft stiffness ratio and of the
support-to-rotor mass ratio. The dry friction fasceounteract also efficiently the well known
destabilising effect of the shaft hysteresis ingbpercritical range. This lecture deals firstlyhwi
the natural precession speeds, investigates thdystesponse to unbalance and defines the ranges
of adhesive or sliding contact. Then, the stalitiga“in the small” of the hysteretic whirl by
means of other external dissipative sources isieudpplying the Floquet approach through a
perturbation procedure, while the stability “in therge” is checked by the direct numerical
solution of the motion equation.

1 INTRODUCTION

Dangerous whirling motions may arise in a rotorgrp system when approaching the critical
flexural speeds, and a great deal of previous ssuldave focused on this technical problem and on
the strategy to face it. Flexible-damped suppoateetbeen widely analyzed (see [1-4]), but such
additional sources of dissipation remain active alosbrb power also at the operating point.

Previous analyses of the authors have developettiéaeof suspending the journal boxes on
elastic supports with suitable rubbing surfacebagonal to the shaft axis, in order to damp the
critical whirling by dry friction, both for symmetr or asymmetric constraint configurations [5-6].
The wear compensation of the sliding surfaces @amhbde in practice automatic if the friction
pads are loaded by suitable spring devices (e.ealleBlle washers, that may keep a nearly
constant closure force when properly designedatsepatents [7-8]).

This suspension configuration operates quite effity if the adhesive state is planned to
include the usual working condition of the rotatingchine, whilst the sliding operation starts
spontaneously to quench the whirl when approaclhimey critical speeds of the fixed-support
system. The dry friction dampers behave thus sityita clutches, which either lock or release the
connection between the journal boxes and the frd@pending on the rotational speed, and do not
produce significant increase of power dissipatioheat production because the friction devices
are mostly motionless.

On the other hand, a relevant drawback of rotatiaghinery is the typical trend to instability
in the supercritical range due to the shaft madtésateresis, which may be restrained however by
other external dissipative sources [9-10]. Thedmestis effect may be dealt with by introducing an
equivalent coefficient of viscous damping, inveysptoportional to the whirling frequency, and
assuming that the hysteretic force is given bypraduct of this coefficient and the rotor centre
velocity relative to a reference frame rotatingdig with the shaft end section.



In particular, the stabilising effect “in the snialf the external dissipation may be studied by
some perturbation approach. As the rotating systelnaviour is non-linear due to dry friction, the
perturbed motion equations contain periodic timpehelent coefficients, whence the Floquet
approach must be used and the stability must bekekdeby controlling the magnitude of the
Floquet characteristic multiplier. However, for dar dry friction levels on the supports, the
Coulombian forces exert a very strong stabilisifiga “in the large”, as can be ascertained by the
numerical solution of the full motion equationsdathe final non-periodic trajectories run very
close to the steady unstable trajectories.

2. MATHEMATICAL MODEL

The mathematical model is similar to reference [Bje differential system is non-linear
because of the continuous self-aligning of theirjdriction forces in opposition to the variable
directions of the instantaneous sliding velociaesl moreover, the sliding conditions may happen
to be replaced by adhesive conditions, in corredence of one or both supports, in some portions
of the speed range. Nevertheless, for axisymmestiffness and damping of the shaft and the
supports, a steady circularly polarized solutiory tna obtained straightforwardly in closed form.

A scheme of the rotor-suspension system is shoviAigare 1 and may be used as a reference

gl y wicgﬁ,'

2 X3 |
| dry friction surface % back support3)
S——== | ™ | exploded view

rotor:

translation ¢), tilt (2) g ks
\\ /,/'/ l/j..l_-: f
/" e) .': C G\t
Y 101: —_—= — .\ — __._.>
X1 7 ¢ X
7 N\A )
(@] e Xo
?ﬁa
¥
z
J
C

Detail

Figure 1: Scheme of rotating machine with explodiesv of back support and frame.
Detail: reference system rotating with end sections



for the notation. The rotor mass ceniés eccentric at a distanedrom the intersectio®, of the
shaft line with the rotor central cross-sectioneThoving frameCén¢ does not take part in the
main rotating motion with angular speeglbut only performs the small elastic rotatighand ¢
around the axegandy. The shaft is horizontal and the gravitationaldfig is counter-directed
with respect to thg axis.

Some external viscous-like environmental dissipattoassumed to affect the translational and
rotational motions of the rotor and the translagilomotion of the supports, whence the damping
coefficientscy, c3, ¢, [Nxs/m] (translative) and, [Nxsxm] (rotative) are introduced.

On the other hand, the shaft hysteresis producestamal dissipative force on the rotor in
opposition with the velocity,. of point O, relative to a reference fran@sé,/7,{s containing the
centres of the shaft end sections and rotating thighshaft angular speed (detail of Fig. 1).
Indicating the dimensionless distances of the rbtam the shaft ends with; = — 7/l andL, =
z/1, wherel is the shaft length, the componentsvgf in the fixed referenc®xpyozy arevie.x =
X =Xy XL+ a)(yl = Ysba y4|-3) and VieLy = Y1~ Ysba ~Vals — w(xl XL, - X4|-3) - The
hysteretic force on the rotor is expressed by tioeyrct of this velocity and a hysteretic coeffidien
Cn: Fn = — ChVrel, While the forces on the supports &kg = — L4Fy, Fan = — LsFy.

Defining a reference stiffness of the shaft witlfe. g., one may puk = 48&l/* for self-
aligning bearings), and a reference critical spsgd « = \/k/_m the dimensionless ratia@ =

ol w, M3 = mg/m, My = my/m, Kz = k3/k, K4 = k4/k, and the damping factodk 3 4 = 0.5¢; 3 4/k
andd, = 0.5c,a/(kl?) are introduced, together with the dimensionlassity parameter = mg/ek

In the case of a weighty, perfectly balanced rattog, motionless equilibrium deflection plane
counter-rotates with the angular speedwith respect to the rotating fran@ &0, of Figure 1.
Therefore, assuming the hysteretic work proportiemahe cycle area, i. e. assuming the integral
Ch‘f(VrzeL,x +Vrze|,,y)dt = Chw ‘f[ (V1 = Lays = Layaequi® + (X1 = LaXs = L3Xa)equi’]d@ proportional tathe
square of the path radius of pof@dt independently oty one deduces that the prodict c,w
may be considered constant on varyiagh : hysteresis constant of the material) and a eonst
hysteresis factod, = 0.5h/k can be introduced. In the presence of some unta|aither static or
dynamic, a further steady shaft deflection hase@ilperimposed, on a plane which rotates rigidly
with the shaft angular speed and is thus uninfluential on the overall hysterdtssipation. When
analysing the perturbations of the steady motionoider to check the system stability, all
perturbed motions should be considered as affdryatifferent hysteretic coefficients; = h
- o}, inversely proportional to the relative angulaesg|c — «f [10], but this approach would be
scarcely productive for non-linear systems like fitesent one. Therefore, in the search of the
stability limits, very small deviations from the maleformation of the shaft will be assumed and
the changes of the viscous-equivalent coefficognrt h /wwill be neglected in the calculation of
the hysteretic force.

The amplitudes of the dry friction force vectaps and @, are supposed constant and their

components are given byg X;/,/X?+y?and-q y,/,/X?+y;? (for j = 3, 4). If one or both
supports are sticking, the sliding forgemust be replaced by the adhesive fapgg;, which must
balance the other forces acting on the support.difmensionless friction forces are scaledkily
@ = g l(ke) and @agnj = @an; /(KE).

All displacements are scaled by the rotor eccattre; all rotations byel/l, all forces bykeand
all moments bkel, whence, introducing the dimensionless displacém@ation vectorsK = { Xy,
X, Xa, Xa} "andY ={Yi, Yo, Y5, Y5} T, whereX; = x;/e, Y; = y; /e, for j # 2, X = ¢lle, Y, = —dlle, for
j = 2, the motion equations may be written in thenfo



KX +20DX +2H(X'+Y)+ QM X" + Q°GY' +
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where the numbers; denote the slidingd = 1) or adhesived = 0) state of the dry friction
contact,D, M and G are the damping, massive and gyroscopic matrigisjiagonal, whose
coefficients ared;, d,, ds, dy), (1, Jg, M3, My) and (0,J,, O, 0) respectively, beingy andJ, the
dimensionless diametral and axial moment of inestithe rotor, scaled byl, while K andH are
the symmetric stiffness and hysteretic matricescintor a hinged-hinged shaft, are given by

1-3LL, L3L4(L3 - L4) - Li - I-g
- L L3L4(L3 - L4) Lgl—i LsLi - L4Lg )
16L3L5 -2 L 165K, + L3 0
-5 —LK 0 161K, + 13
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-, 0 L, Lg

The constant part of the solution, i. e. the efdiiim configuration of the rotor, can be easily
obtained by Egs. (1) and this solution is cleady umique in case of adhesive contact between the
friction surfaces. For sliding contacts or else dontinuous sliding-adhesion transition, one gets
Xequi. = 2FAH(K + 4HAH) {1,0Mas;M} T, Y equi. = =/ (K + 4HAH)™{1,0M3,M,} ", whereA = K™
is the flexibility matrix and, a¥Xequi. # 0, @ static bias due to hysteresis is observatdg.in the
following, the vectorX andY will be assumed emptied of their constant cont€ngi, Y equi.-

The dynamic part of Egs. (1) can be compacted piyiltig Eqgs. (¥) by the unit imaginary

numberi, summing them to Egs.X)land puttingV = X +iY, @,y,; = @aghjx + | Padnjy:

KW +22DW' +2H(W' =iW)+ Q?MW" -iQ*GW' +

. A @)
+{—Q2 exdi 6?) 0 0,9, exp(i argVV3')+(1—03)cDadh3 0,9, ex;:(i argVVi)+(1—a4)¢>adhA}T =0
The natural whirling modes are circular and cardeeved cancelling the matric& H and
the gravitational-unbalance force vector. Usingabmplex notatioW = Wyexp(2,6/02), where
@, = « lw is the dimensionless precession speed, welget 2.5 (M - GQ/Q)]W, = Z(L2,
O)W, = 0, whereZ(Q, Q) is a dynamical matrix for the natural motions.tlagting the



characteristic polynomial, an eight degree algebraguation is obtained for2, whose
coefficients are functions af. Puttingl = Jy — J./ 2, for brevity and indicating the cofactors
with the superscripts ©, one getsKz, = 122,59 + K12Z129 + Kg3pZ? + KyoZsr® = 0. The
characteristic roots, that is the natural precesspeeds, may be traced on conventional Campbell
diagrams2,(£). Figure 2 shows two example cases, for an obkmg) an oblate ellipsoid of
inertia of the rotor, and eight branches of thautoare visible on each diagram, characterised by
an asymptote with slop# /J4 and seven other horizontal asymptotes, give®by 0 and by the
roots of the equatioﬂzz(c) = 0, which is cubic in2,2. The critical angular speed®, = + Q, are
identified by the intersection of the locus witrethisectors of the axes, where the minus sign
refers to the critical retrograde precession (deeda and Den Hartog). There are eight or seven
critical speeds fod,/Jy < 1 orJ,/Jy > 1 respectively (oblong or oblate ellipsoid oéritia of the
rotor).

3. STEADY WHIRLING MOTIONS

The steady circularly polarized solution can beagted puttingV = Weexp(8 into Egs. (4),
observing that the hysteretic terms vanish, anditieqy Eq. (4) in the form

[k +2.a0-0*(M -G)W, = (z, +2i@D)W, = ZW, =

_ 5
= {-Qz 0 -ioy®, exdi argWo,s)_ (1_ O3 )¢adh3 -i0,, exdi arg\NO,4)+ (1_ O, )‘padhA}T ©

whereZ is a complex impedance matri%y its real non-viscous part araadh.j gives the complex

amplitudes of the dimensionless adhesion force.

Since the coefficients of matrix are real and symmetric in all the off-diagonalcels, due to
the diagonal nature of matrl¥, indicating withi, j, k, | a generic combination of the subscripts 1,
2, 3, 4, without repetition, the cofactors and teteant ofZ can be found to be expressedz¥y;
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Figure 2: Campbell diagran3, () for L; = 0.4,K3=K; = 1.5,M3= My=1
(8):J.=0.1,34 = 0.2 (oblong inertia ellipsoid) - (b, = 0.2,J3 = 0.1 (oblate inertia ellipsoid)



= Z%; -40° ZdjdeOY“+2iQ{Zdj(ZovkaQ“—Zé,k)—4_(22djdkd,} L 2% = Z9%;
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-4 dekdl Zy; —2i82 |_d|< (Zo,ij Zoy = ZoiZojj )+ d (Zo,ij Zowe = ZowZo ik )J’ det@) = det¢o) +
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complex matrix inversionZ'l:[ZU@]T/det(Z), permits calculating the complex vectdft, =

z* {-QZ 0 -io,®, eXF(i argvvo,s)_ (1_ O3 )aadhs ~io,®, exdi argVVo,4)+ (1_ g, )5adh.4}T ,
where it is convenient to pifth; = R exp(- ), R being the real orbital radii. If there is adhesion
between the friction surfaces of any supp@gt< 0), the sliding term+i @exp(iy), whose only
argument is unknown, must be replaced by the avzldaete'rm—aadm , with unknown argument

and modulus, but the addition of an extra unknosvodmpensated by the vanishing of the radius
R. Therefore, it is convenient to replace the exptiaé term exptiy) with a more general

complex friction numberl\]j , whose modulus and argument are 1 agdor R > 0, but are both

unknown forR; = 0, wherg l\]j | is equal to the adhesive-to-sliding force ratio.
The solution can be written down in the form

Rl eXp(_ |M_) =Cio— i 013N3 =i C14 N4 R2 eXp(_ |}é) =Cxyp~— i CZ3N3 =i C24N4

. . ~ . ~ . . ~ . ~ (61,2,3,4)
Rsexp(ijs) =Cso—1iCssN; —iCaaN,  RyexpCijs) =cCao—iCs3Ny —icaaN,
where the coefficients; = ¢, + i ¢;; are complex in general, but become real in therrtes of
viscous dissipatiorc; = 0).
Fixing the rotor angular speed, the solution proceds similar to [6], as summarised hereafter.
Assuming firstly sliding conditions for both theujmal boxes, one puthl; = exp(i)) and solves

Egs. (6) for the eight quantiti€® and ;. If no couple of real positive solutions fB andR, can
be found, one or both the journal boxes are stuckreew solutions are sought in the hypothesis of
adhesion of the one or the other support, puttitlieeR; = 0 or R, = 0 and calculating the

complex numberl(l3 or I\Al4 and the orbital radiuR, or R; of the other sliding support. If positive

radii cannot yet be found, there are stick condgi@mn both supports and the numbe}‘sare

calculated puttindR; = Ry = 0. In the case of two possible whirling motioth® one with adhesion
of support 3 and the other of support 4, the sotugjiving a continuous transition from the sliding
to the stick state or vice versa has to be chosen.

Using the above procedure, an optimization procesg be carried out in order to minimize
the whirling motion in the best manner. In practifieng some specific optimization weights for
the motion amplitudes of the rotor and the suppdines maximum value of their weighted average
is minimized throughout the speed range. This dptition process may be carried out
numerically, varying the two variable; and @, gradually, spanning the critical speed range at
each step and reducing the step size in the clegglourhood of the minimum of the above
maximum weighted average.

Figures 3,3 4show the optimized speed response of the r&RgrR;) and the supportR§, Ry)
for an example case with no external damping. Dher response in the two cases of fixed-fixed
and floating-floating journal boxes are also shoamd it is possible to appreciate the good
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Figure 3,34 Optimised frequency response for hinged-hingadrfshaft system.
Data: @; = 2.4054688@, = 0.746875w; =w, = 0.3,ws =w,; = 0.2
Data:L; = O.4,d1 = dz = d3 = d4 =0,Ks=K;=1,M3=M;,=1,33=0.4,1,=0.2

efficiency of the dry friction dampers in cuttinlj eritical speeds by getting into an adhesiveestat
and in restraining the whirl amplitude in the reniiag range. Figures;3 show also the adhesive
force level in the stuck range.

4. STABILITY
The stability of the steady motion “in the smalBrcbe inspected by the small perturbation

approach. Assuming that a perturbati&h, Y, is superimposed to the steady solution (without
the tilde), one gets by Eq. (1), in the hypothesifull sliding of both supports,

KX +20DX' +2H (X' +¥)+ 22 (MX" +GY')=

00 o K8 _ X3+ Xs ol X _ Xy + Xy (7%)

Txae e fefeevif | xEE Jxge ki f ol avif

KY +20DY" +2H(Y' - X )+ 2*(MY"-GX')=
]
00 ol Y Y, +Y, ol Y _ Y, +V, (7y)
: \/xéz*'Yg'Z \/(x;+>Z;)2+(Y3'+\?3')2 ) \/XLZ+YJZ \/(X;+)Z;)2+(Y;+\Z;)2

If one support is stuck, the correspondent staititidn force is unknown, but the amplitude of
its motion is zero, so that the number of degrdeseedom is reduced. If both journal boxes are
stuck, the system becomes linear with constanfficeefts, so that the stability may be controlled



by the conventional Routh-Hurwitz procedure.
Assuming only small perturbations, the linear agpmation of the friction terms of Eqgs. (7)

yields @,

Yj'(Yj’)?} —X}\?}')

xi(Xin _iji) into (#) and recalling the

12 12 12 12 12 12 12 12
Xi+Y )\/xi +Y, (XJ +Y; )\/xj +Y;

into (7), @,

results of the previous section, the 4 + 4 equatioh the differential system7xy) can be

transformed
X'=U
Y'=V

~ M_l
U'=- o7

o 0 Bl cos(o-y) Vs~ )eodo- ] Le13,cos(o- ) Visnlo- . Jeodo- )|

-1

<

V=

into the 8 + 8 first order differenggjuations with variable coefficients

—

KX +20D0 +2H (T + ¥ )+ 2°GV +
< N

. -

KY +20DV +2H(0 - X )- 0?GU +

oo %\Msmz(e—y3)+03sm(e—y3)cos(e-y3)] %Msmz(e—mwasin(e-mcos(e—m]}T

~

4
-

Introducing the 16-dimensional state veckr {)Z,V,U,V}T and indicating the 266 system

matrix of Eq

S. (8) byl', Equations (8) appear in the for§ﬁ=T(9)§.

Due to the non-constancy of matiix whose coefficients are periodic éhwith period 7z the

Floquet theory may be applied to ascertain thelestabunstable nature of the slightly perturbed

motion [11].

It is necessary to derive firstly théx16 fundamental matrix solutio®(6), equal to

the identity matrixd for = 0, which can be done by means of some routindetuler-Cauchy

type or of the Runge-Kutta type. Then, the eigamslof®(6 after one period (also called

characteristi

detf@(r) — Ml = A*+ bA™ + ..

¢ multipliers) must be extracted by 8" degree characteristic equati@i() =

multipliers to be smaller than one in modulus.

If one su
Ui -, Vj-)
arises natur

pport, say is stuck to the frame, all the terms of the cgpomdent rowsX -, Yj -,
and columnsX 1, Y; 1, U; L, V; 1) of ©(7) are replaced by zeroes, so that a fagtor
ally in the characteristic equatiguid) = A*(1*2+ bA™ + ...), which is uninfluential

on the system stability as poiAt= 0 is just the centre at the unitary circle in Gauss-Argand
plane. If both supports are stuck, the differergigdtem reduces to the constant coefficient form

and it is sufficient to check the stability by tReuth-Hurwitz criterion. All these occurrences can

be automatically controlled by some suitable corapaal procedure.

The coefficientsd; of the characteristic polynomi&. can be obtained by a collocation type

procedure, once calculating the mat®y = ©(7). Sinceb; = — Tr(©@,) andb;s = det(@, can be
quickly calculated, the other fourteen coefficieate obtainable choosing seven distinct numbers
ne.gn=1,2 3, 4,5, 6,7, and writingn'* + byn'® + ... +byyn® + b;sn = - det(@,) + Tr(O,)
n™® = n'® + E¢(n), b,n* - byn® + ... +byn? - bisn = - det@,) - Tr(@,) n* - n'® + E(-n), where
the quantite&(n) andE.(—n) are easily calculable by numerics.

Summing and subtracting such equations for eaaine gets two algebraic systems, for the
even and odd coefficients respectivebg, n** + b, n*?2 + ... + by, n® = - det@,) - n'® +

+ bisA + big = 0. Stability requires all these characteristic

(8)



[E.(n)+E.(-n)]/2, bsn®® +bsn't + ... +bysn = Tr(@) n® + [E, (n)-E,(-n)] /2.

Actually, once obtaining the development of theypolmial E,(1), there is no need to calculate
its roots, but it is sufficient, for the stabilignalysis, to verify that they lie inside the uriicte of
the complex plane. Sindg, (1) = (A — A) (A= A) (A= A3) ... (A — Agg) is equal to the product of
sixteen complex vectorsi (- 4;), when the variablel moves counter-clockwise along the unit
circle, starting from the real axis and reaching starting position at the end of one complete, turn
the argument of its conformal imagglexp(¢@)] increases of sixteen times7af all the roots/;
remain on the left of this trajectory, otherwis@dérforms a lesser number of turns, if some roots
lie outside the unit circle. Fixing the system paegers, the numerical check of stability requires
just a short time on a common PC and the procegshmae-iterated changing some mechanical
characteristic, for example until the stabilityebhold is attained.

Figure 4 shows the total viscous damping level adetb assure a stable rotating motion,
together with the changes of the speed responsthdmptimized rotor-shaft system described by
Fig. 3. As observable, just a small amount of daigps requested to stabilize the shaft rotation
above the first critical speed, and this amountaigely reduced in the sliding range of the
supports, due to the dry friction dissipation. Oslyall changes of the response curves can be
observed, so that the analysis leading to Fig.t8chvneglects the viscous damping, is acceptable
with a sufficient approximation.

At this point, an important consideration has tantale. As the above approach refers to small
perturbations of the main motion, nothing can bacteded about the stability “in the large”.
Moreover, in case of sticking support, the insigbibf the steady motion leads necessarily to
release the adhesive contact between the frictiofaces and the arising sliding forces have a
strong stabilising influence. Unfortunately, thatslity “in the large” can be inspected only by the
direct numerical solution of the differential systee. g. by some Runge-Kutta routine, starting for
example from random initial conditions and procegdas far as a large number of cycles are
completed (100 or more). The result is that thetabis whirling motion does not lead at all to
divergent conditions, as could be predicted bylitear analysis, but simply to a sort of small
wobbling of the trajectories of the rotor and theort in the neighbourhood of their steady
circular attractor. This asymptotic behaviour isaly visible in Fig. 5, which refers to a solution
for particular conditions that are otherwise unigtéim the small”.

Summing up, the dry friction dampers exert a venpartant restraining effect on all the small
unstable whirling motions that may arise throughitwt entire speed range, in the sense that the
unstable trembling motion is limited to a wanderwofgthe trajectory amplitude in the very close
neighbourhood of the steady circular path. Nevégti® if the operative conditions of the rotor-
shaft-suspension system are planned for the adhsspercritical regime, such trembling motion
of the supports is not convenient, due to the emeeof wear and heat production, and thus, it is
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better that the journal boxes remain stuck to thené and the stability is achieved by the other
external dissipative sources.

Moreover, it is remarkable that the hysteretic ditzdiion may be also obtained by anisotropic
stiffness characteristics of the supports in thézlbatal and vertical planes (see [12]).

6. CONCLUSION

The problem of the hysteretic instability of theiihg motion in rotating machinery has to be
faced by different approaches depending on theadiner non-linear nature of the system
characteristics. For example, in the hypothesiffoating journal boxes with dry friction surfaces,
planned to damp the critical speeds, the stahiltyhe periodic solutions requires applying the
Floquet theory, which implies the numerical caltiola of the fundamental solution matrix and
the control that the characteristic multipliers amnfined into the unitary circle of the Gauss-
Argand plane. In the range of the adhesive cordadhe contrary, it is convenient to apply the
Routh-Hurwitz criterion. On the other hand, thebsity “in the large” can be controlled only by
the numerical solution of the full equations.

References

[1] Kirk, R.G. and Gunter, E.J., “The Effect of gort Flexibility and Damping on the
Synchronous Response of a Single-Mass FlexiblerRoASME J. Engineering for Industry
94, 221-232 (1972).

[2] Kirk, R.G. and Gunter, E.J., “Effect of Suppdttexibility and Damping on the Dynamic
Response of a Single-Mass Flexible Rotor in El&3#arings”’ ,NASA CR-2083July 1972.

[3] Guo, Z. and Kirk, R.G., “Theoretical Study omstability Boundary of Rotor-Hydrodynamic
Bearing Systems: Part I—Jeffcott Rotor with Extémbamping”, ASME J. of Vibration and
Acoustics125, 417-422 (2003).

[4] Guo, Z. and Kirk, R.G., “Theoretical Study omstability Boundary of Rotor-Hydrodynamic
Bearing Systems: Part [l—Rotor with External Flégilbamped Support’ASME J. of
Vibration and Acousticd25, 423-426 (2003).

[5] Sorge, F., “Rotor Whirl Damping by Dry FrictioBuspension SystemsMECCANICA
SpringerA43, n. 6, pp. 577-589 (2008).

[6] Sorge, F., “Damping of Rotor Conical Whirl bsymmetric Dry Friction Suspension”,
Journal of Sound and Vihr321 (1-2), pp. 79-103 (20/03/2009)

[7] Kirk, R.G. and Hornschuch, H.Bearing and Housing AssemhlyJ.S. Patent n. 4119375,
Oct. 10, 1978.

[8] Moringiello, D.C. and Dallmann, S.H.Ftiction Dampef, U.S. Patent n. 4337982, Jul. 6,
1982.

[9] Montagnier, O. and Hochard, Ch., “Dynamic Irmli&y of Supercritical Driveshafts Mounted
on Dissipative Supports—Effects of Viscous and Hgetic Internal Damping”J. of Sound
and Vibr, 305, 378-400 (2007).

[10] Wettergren, H.L., “On the Behavior of Material Dgimg Due to Multi-Frequency
Excitatior?, J. of Sound and Viby206, 725-735 (1997).

[11]Nayfeh, A.H. and Mook, D.T.,Nonlinear Oscillation§ John Wiley & Sons, New York,
U.S.A, 1979.

[12] Sorge, F. and Cammalleri, M., “An Efficient B@ing Technique for the Unstable Hysteretic
Rotor Whirl by Proper Suspension SystemECOTRIB 2009, European Conference on
Tribology, Pisa, Italy, June 7-10, 2009.



