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SUMMARY. The undesired whirl of rotating machines can be reduced by elastic journal box 
suspension systems equipped with dry friction dampers. The critical speeds can be cut off by the 
adhesion of the friction surfaces and the whirl amplitude can be restrained throughout the 
remaining sliding range by a proper choice of the suspension-to-shaft stiffness ratio and of the 
support-to-rotor mass ratio. The dry friction forces counteract also efficiently the well known 
destabilising effect of the shaft hysteresis in the supercritical range. This lecture deals firstly with 
the natural precession speeds, investigates the steady response to unbalance and defines the ranges 
of adhesive or sliding contact. Then, the stabilisation “in the small” of the hysteretic whirl by 
means of other external dissipative sources is studied applying the Floquet approach through a 
perturbation procedure, while the stability “in the large” is checked by the direct numerical 
solution of the motion equation. 

1 INTRODUCTION 

Dangerous whirling motions may arise in a rotor-support system when approaching the critical 
flexural speeds, and a great deal of previous studies have focused on this technical problem and on 
the strategy to face it. Flexible-damped supports have been widely analyzed (see [1-4]), but such 
additional sources of dissipation remain active and absorb power also at the operating point. 

Previous analyses of the authors have developed the idea of suspending the journal boxes on 
elastic supports with suitable rubbing surfaces orthogonal to the shaft axis, in order to damp the 
critical whirling by dry friction, both for symmetric or asymmetric constraint configurations [5-6]. 
The wear compensation of the sliding surfaces can be made in practice automatic if the friction 
pads are loaded by suitable spring devices (e. g. Belleville washers, that may keep a nearly 
constant closure force when properly designed: see also patents [7-8]). 

This suspension configuration operates quite efficiently if the adhesive state is planned to 
include the usual working condition of the rotating machine, whilst the sliding operation starts 
spontaneously to quench the whirl when approaching the critical speeds of the fixed-support 
system. The dry friction dampers behave thus similarly to clutches, which either lock or release the 
connection between the journal boxes and the frame depending on the rotational speed, and do not 
produce significant increase of power dissipation or heat production because the friction devices 
are mostly motionless. 

On the other hand, a relevant drawback of rotating machinery is the typical trend to instability 
in the supercritical range due to the shaft material hysteresis, which may be restrained however by 
other external dissipative sources [9-10]. The hysteresis effect may be dealt with by introducing an 
equivalent coefficient of viscous damping, inversely proportional to the whirling frequency, and 
assuming that the hysteretic force is given by the product of this coefficient and the rotor centre 
velocity relative to a reference frame rotating rigidly with the shaft end section. 



In particular, the stabilising effect “in the small” of the external dissipation may be studied by 
some perturbation approach. As the rotating system behaviour is non-linear due to dry friction, the 
perturbed motion equations contain periodic time-dependent coefficients, whence the Floquet 
approach must be used and the stability must be checked by controlling the magnitude of the 
Floquet characteristic multiplier. However, for large dry friction levels on the supports, the 
Coulombian forces exert a very strong stabilising effect “in the large”, as can be ascertained by the 
numerical solution of the full motion equations, and the final non-periodic trajectories run very 
close to the steady unstable trajectories.  

2. MATHEMATICAL MODEL 

The mathematical model is similar to reference [6]. The differential system is non-linear 
because of the continuous self-aligning of the sliding friction forces in opposition to the variable 
directions of the instantaneous sliding velocities and moreover, the sliding conditions may happen 
to be replaced by adhesive conditions, in correspondence of one or both supports, in some portions 
of the speed range. Nevertheless, for axisymmetric stiffness and damping of the shaft and the 
supports, a steady circularly polarized solution may be obtained straightforwardly in closed form. 

A scheme of the rotor-suspension system is shown in Figure 1 and may be used as a reference 
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Figure 1: Scheme of rotating machine with exploded view of back support and frame. 
Detail: reference system rotating with end sections 
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for the notation. The rotor mass centre C is eccentric at a distance e from the intersection O1 of the 
shaft line with the rotor central cross-section. The moving frame Cξηζ does not take part in the 
main rotating motion with angular speed ω, but only performs the small elastic rotations ϕ and ψ 
around the axes x and y. The shaft is horizontal and the gravitational field g is counter-directed 
with respect to the y axis. 

Some external viscous-like environmental dissipation is assumed to affect the translational and 
rotational motions of the rotor and the translational motion of the supports, whence the damping 
coefficients c1, c3, c4 [N×s/m] (translative) and c2 [N×s×m] (rotative) are introduced. 

On the other hand, the shaft hysteresis produces an internal dissipative force on the rotor in 
opposition with the velocity vrel. of point O1 relative to a reference frame O3ξ0η0ζ0 containing the 
centres of the shaft end sections and rotating with the shaft angular speed ω (detail of Fig. 1). 
Indicating the dimensionless distances of the rotor from the shaft ends with L3 = − z3 /l and L4 = 
z4/ l, where l is the shaft length, the components of vrel. in the fixed reference Ox0y0z0 are vrel.,x = 

34431 LxLxx &&& −−  + ( )34431 LyLyy −−ω  and vrel.,y = 34431 LyLyy &&& −−  − ( )34431 LxLxx −−ω . The 

hysteretic force on the rotor is expressed by the product of this velocity and a hysteretic coefficient 
ch: Fh = − chvrel., while the forces on the supports are F3h = − L4Fh, F4h = − L3Fh. 

Defining a reference stiffness of the shaft with k (e. g., one may put k = 48EI/l3 for self-

aligning bearings), and a reference critical speed with ωc = mk , the dimensionless ratios Ω = 

ω/ ωc, M3 = m3 /m, M4 = m4 /m, K3 = k3 /k, K4 = k4 /k, and the damping factors d1,3,4 = 0.5c1,3,4ωc/k 
and d2 = 0.5c2ωc/(kl2) are introduced, together with the dimensionless gravity parameter Γ = mg/ek. 

In the case of a weighty, perfectly balanced rotor, the motionless equilibrium deflection plane 
counter-rotates with the angular speed −ω with respect to the rotating frame O3ξ0η0ζ0 of Figure 1. 
Therefore, assuming the hysteretic work proportional to the cycle area, i. e. assuming the integral 

ch ( )∫ + dtvv yx
2

,rel.
2

,rel.  = chω [∫ (y1 − L4y3 − L3y4)equil.
2 + (x1 − L4x3 − L3x4)equil.

2]dθ proportional to the 

square of the path radius of point O1 independently of ω, one deduces that the product h = chω 
may be considered constant on varying ω (h : hysteresis constant of the material) and a constant 
hysteresis factor dh = 0.5h/k can be introduced. In the presence of some unbalance, either static or 
dynamic, a further steady shaft deflection has to be superimposed, on a plane which rotates rigidly 
with the shaft angular speed ω, and is thus uninfluential on the overall hysteretic dissipation. When 
analysing the perturbations of the steady motion in order to check the system stability, all 
perturbed motions should be considered as affected by different hysteretic coefficients chi = h /|ωi 
− ω|, inversely proportional to the relative angular speed |ωi − ω| [10], but this approach would be 
scarcely productive for non-linear systems like the present one. Therefore, in the search of the 
stability limits, very small deviations from the main deformation of the shaft will be assumed and 
the changes of  the viscous-equivalent coefficient ch = h /ω will be neglected in the calculation of 
the hysteretic force. 

The amplitudes of the dry friction force vectors φφφφ3 and φφφφ4 are supposed constant and their 

components are given by −φj jx′ / 22
jj yx ′+′ and −φj jy′ / 22

jj yx ′+′  (for j = 3, 4). If one or both 

supports are sticking, the sliding force φφφφj must be replaced by the adhesive force φφφφadh.j, which must 
balance the other forces acting on the support. The dimensionless friction forces are scaled by ke: 
Φj = φj /(ke) and Φadh.,j = φadh.j /(ke). 

All displacements are scaled by the rotor eccentricity e, all rotations by e/l, all forces by ke and 
all moments by kel, whence, introducing the dimensionless displacement-rotation vectors X = {X1, 
X2, X3, X4}T and Y = {Y1, Y2, Y3, Y4}T, where Xj = xj /e, Yj = yj /e, for j ≠ 2, Xj = ψl/e, Yj = −ϕl/e, for 
j = 2, the motion equations may be written in the form 
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where the numbers σj denote the sliding (σj = 1) or adhesive (σj = 0) state of the dry friction 
contact, D, M and G are the damping, massive and gyroscopic matrices, all diagonal, whose 
coefficients are (d1, d2, d3, d4), (1, Jd, M3, M4) and (0, Ja, 0, 0) respectively, being Jd and Ja the 
dimensionless diametral and axial moment of inertia of the rotor, scaled by ml2, while K and H are 
the symmetric stiffness and hysteretic matrices, which, for a hinged-hinged shaft, are given by 
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The constant part of the solution, i. e. the equilibrium configuration of the rotor, can be easily 

obtained by Eqs. (1) and this solution is clearly not unique in case of adhesive contact between the 
friction surfaces. For sliding contacts or else for continuous sliding-adhesion transition, one gets 
Xequil. = 2ΓAH(K + 4HAH)-1{1,0,M3,M4}T, Yequil. = −Γ (K + 4HAH)-1{1,0,M3,M4}T, where A = K-1 

is the flexibility matrix and, as Xequil. ≠ 0, a static bias due to hysteresis is observable. Yet, in the 
following, the vectors X and Y will be assumed emptied of their constant content, Xequil.,

 Yequil.. 
The dynamic part of Eqs. (1) can be compacted multiplying Eqs. (1y) by the unit imaginary 

number i, summing them to Eqs. (1x) and putting W = X + iY, jadh.Φ̂ = Φadh.j,x + iΦadh.j,y: 
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The natural whirling modes are circular and can be derived cancelling the matrices D, H and 

the gravitational-unbalance force vector. Using the complex notation W = W0 exp(iΩnθ /Ω), where 
Ωn = ωn /ωc is the dimensionless precession speed, we get [K − Ωn

2(M − GΩ /Ωn)]W0 = Z(Ω, 

Ωn)W0 = 0, where Z(Ω, Ωn) is a dynamical matrix for the natural motions. Extracting the 



characteristic polynomial, an eight degree algebraic equation is obtained for Ωn, whose 
coefficients are functions of Ω . Putting I = Jd − JaΩ/Ωn for brevity and indicating the cofactors 
with the superscripts …(c), one gets (K22 − IΩn

2)Z22
(c) + K12Z12

(c) + K32Z32
(c) + K42Z42

(c) = 0. The 
characteristic roots, that is the natural precession speeds, may be traced on conventional Campbell 
diagrams Ωn(Ω). Figure 2 shows two example cases, for an oblong and an oblate ellipsoid of 
inertia of the rotor, and eight branches of the locus are visible on each diagram, characterised by 
an asymptote with slope Ja /Jd and seven other horizontal asymptotes, given by Ωn = 0 and by the 
roots of the equation Z22

(c) = 0, which is cubic in Ωn
2. The critical angular speeds, Ωn = ± Ω, are 

identified by the intersection of the locus with the bisectors of the axes, where the minus sign 
refers to the critical retrograde precession (see Stodola and Den Hartog). There are eight or seven 
critical speeds for Ja /Jd < 1 or Ja /Jd > 1 respectively (oblong or oblate ellipsoid of inertia of the 
rotor). 

 3. STEADY WHIRLING MOTIONS 

The steady circularly polarized solution can be obtained putting W = W0exp(iθ) into Eqs. (4), 
observing that the hysteretic terms vanish, and rewriting Eq. (4) in the form 

 

( )[ ] ( )
( ) ( ) ( ) ( ){ }T

WiiWii

ii

4adh.44,0443adh.33,033
2

0000
2

1argexp1argexp0

22

ΦσΦσΦσΦσΩ

ΩΩΩ

−+−−−−=

==+=−−+ ZWWDZWGMDK
 (5) 

 
where Z is a complex impedance matrix, Z0 its real non-viscous part and jadh.Φ gives the complex 

amplitudes of the dimensionless adhesion force. 
Since the coefficients of matrix Z are real and symmetric in all the off-diagonal places, due to 

the diagonal nature of matrix D, indicating with i, j, k, l a generic combination of the subscripts 1, 
2, 3, 4, without repetition, the cofactors and determinant of Z can be found to be expressed by Z(c)
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where it is convenient to put W0,j = Rj exp(−iγj), Rj being the real orbital radii. If there is adhesion 
between the friction surfaces of any support (σj = 0), the sliding term −iΦjexp(−iγj), whose only 
argument is unknown, must be replaced by the adhesive term − jadh.Φ , with unknown argument 

and modulus, but the addition of an extra unknown is compensated by the vanishing of the radius 
Rj. Therefore, it is convenient to replace the exponential term exp(−iγj) with a more general 

complex friction number jN̂ , whose modulus and argument are 1 and −γj for Rj > 0, but are both 

unknown for Rj = 0, where | jN̂ | is equal to the adhesive-to-sliding force ratio. 

The solution can be written down in the form 
 

R1 exp(− iγ1) = c10 − i c13 3N̂  − i c14 4N̂  R2 exp(− iγ2) = c20 − i c23 3N̂  − i c24 4N̂  

R3 exp(− iγ3) = c30 − i c33 3N̂  − i c34 4N̂  R4 exp(− iγ4) = c40 − i c43 3N̂  − i c44 4N̂  
(61,2,3,4) 

 
where the coefficients cij = cij,r  + i cij,i  are complex in general, but become real in the absence of 
viscous dissipation (cij,i  = 0). 

Fixing the rotor angular speed, the solution procedure is similar to [6], as summarised hereafter. 

Assuming firstly sliding conditions for both the journal boxes, one puts jN̂ = exp(−iγj) and solves 

Eqs. (6) for the eight quantities Rj and γj. If no couple of real positive solutions for R3 and R4 can 
be found, one or both the journal boxes are stuck and new solutions are sought in the hypothesis of 
adhesion of the one or the other support, putting either R3 = 0 or R4 = 0 and calculating the 

complex number 3N̂  or 4N̂  and the orbital radius R4 or R3 of the other sliding support. If positive 

radii cannot yet be found, there are stick conditions on both supports and the numbers jN̂ are 

calculated putting R3 = R4 = 0. In the case of two possible whirling motions, the one with adhesion 
of support 3 and the other of support 4, the solution giving a continuous transition from the sliding 
to the stick state or vice versa has to be chosen. 

Using the above procedure, an optimization process may be carried out in order to minimize 
the whirling motion in the best manner. In practice, fixing some specific optimization weights for 
the motion amplitudes of the rotor and the supports, the maximum value of their weighted average 
is minimized throughout the speed range. This optimization process may be carried out 
numerically, varying the two variables Φ3 and Φ4 gradually, spanning the critical speed range at 
each step and reducing the step size in the close neighbourhood of the minimum of the above 
maximum weighted average. 

Figures 31,2,3,4 show the optimized speed response of the rotor (R1, R2) and the supports (R3, R4) 
for an example case with no external damping. The rotor response in the two cases of fixed-fixed 
and floating-floating journal boxes are also shown and it is possible to appreciate the good 



efficiency of the dry friction dampers in cutting all critical speeds by getting into an adhesive state 
and in restraining the whirl amplitude in the remaining range. Figures 33,4 show also the adhesive 
force level in the stuck range. 

4. STABILITY 

The stability of the steady motion “in the small” can be inspected by the small perturbation 

approach. Assuming that a perturbation, X
~

, Y
~

, is superimposed to the steady solution (without 
the tilde), one gets by Eq. (1), in the hypothesis of full sliding of both supports, 
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If one support is stuck, the correspondent static friction force is unknown, but the amplitude of 

its motion is zero, so that the number of degrees of freedom is reduced. If both journal boxes are 
stuck, the system becomes linear with constant coefficients, so that the stability may be controlled 

 0 1 2 

2 

3 

0 

1 

 Ω 

 R1 31 

fixed supports 

free supports 

 

3 0 1 2 3 

2 

3 

0 

1 

 Ω 

 R2/2 32 

fixed supports 

free supports 

0 1 2 3 

2 

3 

1 

 Ω 

R3

3

3.,

Φ
Φadh

 

0 

33 

 R3
 

 Φadh.,3 /Φ3
 

 Φadh.,3 /Φ3 

0 1 2 
0 

2 

3 

1 

 Ω 

R4 

4

4.,

Φ
Φadh

 

3 

 R4
 

 Φadh.,4 /Φ4 
 Φadh.,4 /Φ4

 

34 

Figure 31,2,3,4: Optimised frequency response for hinged-hinged rotor-shaft system. 
Data: Φ3 = 2.4054688, Φ4 = 0.746875, w1 = w2 = 0.3, w3 = w4 = 0.2 
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by the conventional Routh-Hurwitz procedure. 
Assuming only small perturbations, the linear approximation of the friction terms of Eqs. (7) 

yields 
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results of the previous section, the 4 + 4 equations of the differential system (7x,y) can be 
transformed into the 8 + 8 first order differential equations with variable coefficients 
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Introducing the 16-dimensional state vector { }TVUYXS
~

,
~

,
~

,
~~ =  and indicating the 16×16 system 

matrix of Eqs. (8) by T, Equations (8) appear in the form ( )STS
~~ θ=′ . 

Due to the non-constancy of matrix T, whose coefficients are periodic in θ with period π, the 
Floquet theory may be applied to ascertain the stable or unstable nature of the slightly perturbed 
motion [11]. It is necessary to derive firstly the 16×16 fundamental matrix solution ΘΘΘΘ(θ), equal to 
the identity matrix I for θ = 0, which can be done by means of some routine of the Euler-Cauchy 
type or of the Runge-Kutta type. Then, the eigenvalues of ΘΘΘΘ(θ) after one period (also called 
characteristic multipliers) must be extracted by the 16th degree characteristic equation Ec(λ) = 
det[Θ(π) − λI] = λ16 + b1λ15 + … + b15λ + b16 = 0. Stability requires all these characteristic 
multipliers to be smaller than one in modulus. 

If one support, say j, is stuck to the frame, all the terms of the correspondent rows (X'j →, Y'j →, 
U'j →, V'j →) and columns (Xj ↓, Yj ↓, Uj ↓, Vj ↓) of ΘΘΘΘ(π) are replaced by zeroes, so that a factor λ4 
arises naturally in the characteristic equation, Ec(λ) = λ4(λ12 + b1λ11 + …), which is uninfluential 
on the system stability as point λ = 0 is just the centre at the unitary circle in the Gauss-Argand 
plane. If both supports are stuck, the differential system reduces to the constant coefficient form 
and it is sufficient to check the stability by the Routh-Hurwitz criterion. All these occurrences can 
be automatically controlled by some suitable computational procedure. 

The coefficients bj of the characteristic polynomial Ec can be obtained by a collocation type 
procedure, once calculating the matrix ΘΘΘΘπ = ΘΘΘΘ(π). Since b1 = − Tr(Θπ) and b16 = det(Θπ) can be 
quickly calculated, the other fourteen coefficients are obtainable choosing seven distinct numbers 
n, e. g. n = 1, 2, 3, 4, 5, 6, 7, and writing b2 n

14 + b3 n
13 + … + b14 n

2 + b15 n = − det(Θπ) + Tr(Θπ) 
n15 − n16 + Ec(n), b2 n

14 − b3 n
13 + … + b14 n

2 − b15 n = − det(Θπ) − Tr(Θπ) n
15 − n16 + Ec(−n), where 

the quantites Ec(n) and Ec(−n) are easily calculable by numerics. 
Summing and subtracting such equations for each n, one gets two algebraic systems, for the 

even and odd coefficients respectively, b2 n
14 + b4 n

12 + … + b14 n
2 = − det(Θπ) − n16 + 



( ) ( )[ ] 2nEnE cc −+ , b3 n
13 + b5 n

11 + … + b15 n = Tr(Θπ) n
15 + ( ) ( )[ ] 2nEnE cc −− . 

Actually, once obtaining the development of the polynomial Ec(λ), there is no need to calculate 
its roots, but it is sufficient, for the stability analysis, to verify that they lie inside the unit circle of 
the complex plane. Since Ec (λ) = (λ − λ1) (λ − λ2) (λ − λ3) … (λ − λ16) is equal to the product of 
sixteen complex vectors (λ − λj), when the variable λ moves counter-clockwise along the unit 
circle, starting from the real axis and reaching the starting position at the end of one complete turn, 
the argument of its conformal image Ec[exp(iφ)] increases of sixteen times 2π if all the roots λj 
remain on the left of this trajectory, otherwise it performs a lesser number of turns, if some roots 
lie outside the unit circle. Fixing the system parameters, the numerical check of stability requires 
just a short time on a common PC and the process may be re-iterated changing some mechanical 
characteristic, for example until the stability threshold is attained. 

Figure 4 shows the total viscous damping level needed to assure a stable rotating motion, 
together with the changes of the speed response, for the optimized rotor-shaft system described by 
Fig. 3. As observable, just a small amount of damping is requested to stabilize the shaft rotation 
above the first critical speed, and this amount is largely reduced in the sliding range of the 
supports, due to the dry friction dissipation. Only small changes of the response curves can be 
observed, so that the analysis leading to Fig. 3, which neglects the viscous damping, is acceptable 
with a sufficient approximation. 

At this point, an important consideration has to be made. As the above approach refers to small 
perturbations of the main motion, nothing can be concluded about the stability “in the large”. 
Moreover, in case of sticking support, the instability of the steady motion leads necessarily to 
release the adhesive contact between the friction surfaces and the arising sliding forces have a 
strong stabilising influence. Unfortunately, the stability “in the large” can be inspected only by the 
direct numerical solution of the differential system, e. g. by some Runge-Kutta routine, starting for 
example from random initial conditions and proceeding as far as a large number of cycles are 
completed (100 or more). The result is that the unstable whirling motion does not lead at all to 
divergent conditions, as could be predicted by the linear analysis, but simply to a sort of small 
wobbling of the trajectories of the rotor and the support in the neighbourhood of their steady 
circular attractor. This asymptotic behaviour is clearly visible in Fig. 5, which refers to a solution 
for particular conditions that are otherwise unstable “in the small”. 

Summing up, the dry friction dampers exert a very important restraining effect on all the small 
unstable whirling motions that may arise throughout the entire speed range, in the sense that the 
unstable trembling motion is limited to a wandering of the trajectory amplitude in the very close 
neighbourhood of the steady circular path. Nevertheless, if the operative conditions of the rotor-
shaft-suspension system are planned for the adhesive supercritical regime, such trembling motion 
of the supports is not convenient, due to the increase of wear and heat production, and thus, it is 

ω /ωc 

d/dh 

Figure 5: Non-periodic rotor centre path. 
K3= K4= M3= M4= 0.2, Jd= 0.4, Ja = 0.2 

dh= 0.1, d1= d2= d3= d4= 0.25×dh 
ω /ωc= 4, L3= 0.4, Γ = 0.3 

Φ3 = 1.3160156, Φ4 = 0.39335938 
(interval: 20 cycles) 

Figure 4: Viscous damping at stability threshold. 
dh= 0.05, d1= d2= d3= d4= d; other data like in Fig. 3 
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better that the journal boxes remain stuck to the frame and the stability is achieved by the other 
external dissipative sources. 

Moreover, it is remarkable that the hysteretic stabilization may be also obtained by anisotropic 
stiffness characteristics of the supports in the horizontal and vertical planes (see [12]). 

6. CONCLUSION 

The problem of the hysteretic instability of the whirling motion in rotating machinery has to be 
faced by different approaches depending on the linear or non-linear nature of the system 
characteristics. For example, in the hypothesis of floating journal boxes with dry friction surfaces, 
planned to damp the critical speeds, the stability of the periodic solutions requires applying the 
Floquet theory, which implies the numerical calculation of the fundamental solution matrix and 
the control that the characteristic multipliers are confined into the unitary circle of the Gauss-
Argand plane. In the range of the adhesive contact on the contrary, it is convenient to apply the 
Routh-Hurwitz criterion. On the other hand, the stability “in the large” can be controlled only by 
the numerical solution of the full equations. 

 
References 

 [1] Kirk, R.G. and Gunter, E.J., “The Effect of Support Flexibility and Damping on the 
Synchronous Response of a Single-Mass Flexible Rotor”, ASME J. Engineering for Industry, 
94, 221-232 (1972). 

[2] Kirk, R.G. and Gunter, E.J., “Effect of Support Flexibility and Damping on the Dynamic 
Response of a Single-Mass Flexible Rotor in Elastic Bearings”, NASA CR-2083, July 1972. 

[3] Guo, Z. and Kirk, R.G., “Theoretical Study on Instability Boundary of Rotor-Hydrodynamic 
Bearing Systems: Part I—Jeffcott Rotor with External Damping”, ASME J. of Vibration and 
Acoustics, 125, 417-422 (2003). 

[4] Guo, Z. and Kirk, R.G., “Theoretical Study on Instability Boundary of Rotor-Hydrodynamic 
Bearing Systems: Part II—Rotor with External Flexible Damped Support”, ASME J. of 
Vibration and Acoustics, 125, 423-426 (2003). 

[5] Sorge, F., “Rotor Whirl Damping by Dry Friction Suspension Systems”, MECCANICA, 
Springer, 43, n. 6, pp. 577-589 (2008). 

[6]  Sorge, F., “Damping of Rotor Conical Whirl by Asymmetric Dry Friction Suspension”, 
Journal of Sound and Vibr., 321 (1-2), pp. 79-103 (20/03/2009) 

[7] Kirk, R.G. and Hornschuch, H., “Bearing and Housing Assembly”, U.S. Patent n. 4119375, 
Oct. 10, 1978. 

[8] Moringiello, D.C. and Dallmann, S.H., “Friction Damper”, U.S. Patent n. 4337982, Jul. 6, 
1982. 

[9] Montagnier, O. and Hochard, Ch., “Dynamic Instability of Supercritical Driveshafts Mounted 
on Dissipative Supports—Effects of Viscous and Hysteretic Internal Damping”, J. of Sound 
and Vibr., 305, 378–400 (2007). 

[10] Wettergren, H.L., “On the Behavior of Material Damping Due to Multi-Frequency 
Excitation”, J. of Sound and Vibr., 206, 725-735 (1997). 

[11] Nayfeh, A.H. and Mook, D.T., “Nonlinear Oscillations”, John Wiley & Sons, New York, 
U.S.A., 1979. 

[12] Sorge, F. and Cammalleri, M., “An Efficient Damping Technique for the Unstable Hysteretic 
Rotor Whirl by Proper Suspension Systems”, ECOTRIB 2009, European Conference on 
Tribology, Pisa, Italy, June 7-10, 2009. 


