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ABSTRACT

This paper shows how the destabilising influence of the shaft hysteresis on the supercritical
rotor whirl can be efficiently counterbalanced by external dissipative sources. After
calculating the steady whirling paths of the rotor and the bearing due to unbalance, the
stability is checked by the Routh-Hurwitz procedure, investigating the influence of the
stiffness anisotropy of the supports. A fairly interesting result is that the instability
phenomena can be conveniently prevented by different suspension stiffness in the horizontal
and vertical planes.
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INTRODUCTION, NATURAL MODESAND STEADY MOTION

The supercritical instability trend of rotor whirl motions because of the shaft hysteresis is
generally rather modest but may become important in some applications, e. g. in long
carbon/epoxy driveshafts with relevant hysteretic resistances [1]. Nevertheless, the hysteretic
instability can be efficiently counterbalanced by other dissipative sources. Recent researches
[2,3] show that elastic journal box suspensions with dry friction damping yield an excellent
contrast to the critical flexural speeds, and exert also a strong quenching action on the
unstable hysteresis motions.

The stabilizing properties of the external viscous damping are generally detected in the
literature for centred rotor-support arrangements (e. g. see [4]). The present analysis considers
a non-centred assembly, with different suspension stiffness in the horizontal and vertical
planes. The stability is checked by the classical Routh-Hurwitz procedure, investigating the
influence of several mechanical characteristics and finding that the hysteretic phenomena can
be conveniently prevented by planning different suspension stiffness in the horizontal and
vertical planes.

Figure 1 shows a rotor-suspension system and may be used as a reference for the notation.
The approach is similar to [3]. The rotor is affected by the unbakacel the assembly is
horizontal in the gravitational field. The frameCén¢ does not partake in the main rotating



motion, but performs only the small elastic rotaigp and ¢ around the axesandy. The
differentiation with respect to the angular timeiable 8 = «t is indicated with primes,
whenced(...)/dt = «{...)", etc. Introducing a reference shaft stiffnkg®. g.k = 48E1/° for

self-aligning bearings) and a reference criticaesjre. = \/k/m, the angular speed rati@ =

aax, the stiffness ratiosKsx = kadk, Kzy = Kay/k, Kax = ka/k, Kay = Kkay/k and the
dimensionless gravity paramet€r mg/ekare also introduced.

External viscous dissipation sources are suppasedtton the rotor translation and rotation
and the coefficients; [Nxs/m] andc; [Nxsxm] are introduced, together with the damping
factorsd; = 0.5cia/k andd, = 0.5¢, a/(kI?). Likewise, the damping factods, = 0.5caa/k,

day = 0.5caya/k, day = 0.5caxa/K, day = 0.5cayad/K, are ascribed to the horizontal and vertical
motions of the supports. The shaft is consideredsaess, elastic and hysteretic, and the
internal dissipative force is assumed proportidoahe velocityv,e. of pointO; relative to a
reference syster®;<&/70{o having the coordinate ax& through the shaft end section centres
and rotating rigidly at the same angular speedsee detail of Fig. 1). Indicating the
dimensionless distances of the rotor from the shadis withL; = —z /I andLs = z4/I, where

| is the shaft length, the componentsvgf in the fixed frame arge.x = % — %L, - X,L; +
a)(yl =Y, = y4L3) andviey = ¥, -~ Y¥sL, - y,Ls — cu(x1 =%, - x4L3). The hysteresis force
on the rotor isFy = — ChVrel, Wherecy, is a hysteretic coefficient, and the forces on tikie
supports arés, = — LaFn, Fan = — L3Fn.

In case of full rotor balancing, the equilibriumfldetion plane of the shaft counter-rotates
with speed-wwith respect to the fram®@3;&/70{o, the hysteretic work done during one single
revolution isLy = Gaf (2, +V2,, Jdt = chew § [(Yreq — Yaeqls = Yaeqls)? + (Xieq. = Xseqla =

rel.,x
x49q,l_3)2]d9 and, assuming this work proportionaltke path area regardlessafthe product
chow May be assumed constant. The presence of soméanobanduces a further rotating
bending of the shaft with spee@ around the equilibrium configuration and, while for

Cay -
)’\ uﬁ 3)// S

7\ VY;
gl §_C&n | o Kax
yOA . /[ﬂ .I'.
OIS VAN Vs
it f xa 2 $ X
\% Xo
C4y G
¥
z
Cy + 4
CL ‘ // k4X
Y45 x
B Detail
etal
Zn % o

Fig. 1: Scheme of rotating machine.
Detail: reference system rotating with end sections



symmetric support stiffness this motion is rigidtwihe frameO3&/70{o and uninfluential on
the overall dissipation, in case of anisotropitfratiss Kax # Ky, Kax # Kay), the unbalanced
trajectories are elliptical and take double loogbdpes in the rotating referen©eéo/7o{o,
where, however, they are covered by twice the dnedfuency (Z). According to [5], the
two dissipative cycles can be dealt with separaaly two different hysteresis coefficiemts
can be defined, the oney, for the frequencyv and the otherg,,, for the double frequency
2w As it is reasonable to assume,; = 2acy; = h [5], whereh is a hysteresis constant of the
material, two hysteresis factors can be introdudgds 0.5h/k for the relative rotation of the
equilibrium deflection plane, andy, = 0.2%/k = dy/2 for the elliptical motion due to
unbalance.

Scaling all displacements by the rotor eccentrieitgnd all rotations b/l as in [3], the
dimensionless displacement-rotation vectérs { Xy, Xo, X3, Xa} " andY ={Y1, Ya, Ys, Ya} "
may be introduced, where, using the subscripts 4, & in Fig. 1 for the rotor and support
displacements and 2 for the rotor tilt aroynak X, it was putx; = x;/e, Y; = y; /e, for j # 2, X

= ylle, Y; = —-¢lle, for ] = 2. Scaling all forces and moments kg and kel respectively,
calculating by the usual way the dimensionles$ngt#fs matrice&j, for j = x ory (inflexion
planesxz andy2z), defining the dimensionless hysteretic matrigles$or i = 1 or 2 (frequency
wand ZJ),

1 0 -1, -L,
O 0 0 O

Hi=dulo1, 0 12 L, ()
-L; 0 LgL, L5

introducing the dimensionless diametral and axiahrant of inertia of the rotody = jo/mf
andJ, = jJ/mFP, wherejq andj. are the true moments, the equations of motiorbeanritten in
the form

K X +20D X +2H, (X' +Y)+ 2°MX"+ Q%GY' ={@%coss 0 0 o}
2a,b
[} [} 2 " 2 [} 2 T ( )

K, Y +2D, Y +2Hi(Y —X)+Q MY" - Q°GX ={Q sind-/~ 0 O O}

whereDj; (j = X, y), M andG are diagonal and are the viscous, mass and gyigsetrices,
whose coefficients arel{, do, d3j, dg), (1,Jg, O, 0) and (0J,, O, O) respectively.

The equilibrium configuration (constant solutios)easily obtained rewriting Egs. 2 in the
form KyXeq + 2H1Yeq = 0,Ky,Y eq — 2H1Xeq. =—/{1,0,0,3 T, whence

2y 2
Xoq = 320/ LsLs [16L§L§1 16L,L,(L,-L;) © o]T
14 (320,1202)
h1=3%=4 T
S B (- F N & S & 6L, (Ly-Ly) Ly, L L L | (B&D)

eq. —

1+(320,22F Koy Koy 14(320,122f Koy Kay Koy Kay

As X; andX; are positive wheul,; #0 andL, > L3, the hysteresis produces a static bias of the
inflexion plane concordant with the rotation.

The natural frequencies can be found cancellingntfagricesD and H and the gravity-
unbalance terms from Eqgs. (2). Using the compleation X = X, exp(2,0/0), Y = -iY,
exp(2.0/Q), where @, = w, /e, a fourth degree characteristic equation@f can be

obtained. Defining withK i'}' the 2 matrix extracted from the rowsand columnl of a



generic matrix and puttingK, = Kig—ng(K gsz)‘lKgi, K, = Kﬁ—K“(K gﬁyz) K
for brevity Kx.andKy, differ only in the places 33 and 44), one gets

I.(lel Q Xszz J -Q) leZ”.( Ky =42 )(KV22 'Q) Ky ]_ (4)
anl -Q Kyll QZ}JZQZ'QZ

The characteristic roots of Eq. (4) can be trace@€ampbell diagram&,(£2),symmetric with
respect to the origin. The choice between the plusiinus sign to be ascribed 18, =

+./02? has to be done, for each couple of amplitidesndY;o, so that their producty X

Is positive, whence the whirling motion is a pregpive or retrograde precession 2y> 0

or Q, < 0. It is remarkable that, for quite differeniffaess of the supports, some whirling
motions (e. g. of the rotor and of one support) roaycounter-directed with respect to each
other. All diagrams show the inclined asympt@$ély and the five horizontal asymptote3;

=0, 2= +Ky,, 2= L/KYM. The critical angular speed§, = = 2 (progressive or

retrograde), are identified by the intersectiortha locus with the bisectors of the axes. We
may have seven or six critical speeds at moskftdg < 1 orJ,/Jy > 1 respectively (oblong or
oblate ellipsoid of inertia of the rotor).

The forced whirling motions due to unbalance carmétected replaciny = X cosd + Xg
sing, Y = Y cosf + Yg sind into Eqgs. (2) and equating all terms in €and in sir@
separately. A 1816 algebraic system is obtainable, whose solutivaesgthe elliptical paths
of the rotor and the supports and the ellipticalical locus of the rotor axis. The principal
amplitudes and orientation are given by

dmax. =2\/|:Yc%1 +Ys%] +XCZOJ + XSZOJ +\/(Yc%1 +Ys%] X(:201 XSZOj) +4(Xc01 c0] SO] 501)2:|/

min.
tanZ(pj = 2( CO] CO] + XSOjYSOj )/(xCZOj + XSZOJ CO] YSZOJ)
Figure 2a shows examples of these loci, while Bigshows the two looped path of poit
in the rotating fram®s<p770{o. Dots refer tod= 0.

STABILITY

The stability can be controlled by the approactthefsmall perturbation, here indicated with
tildes, replacingX = Xsteady+>~( andY = Ysteady+\~( into Egs. (2ab) and cancelling the steady
variables and the forcing terms. The hysteresi®fal; will be used if the gravity prevails
over the unbalanceg(>> 1),dy, will be used vice versa(<< 1). Assuming solutions of the
type X :ioexp(JH/Q), Y =\70 exp(@/Q), whereois a characteristic number, one gets the
twelfth degree characteristic equation

de{K ,+20D,,+20H,/Q+0*M 2H, +00QG }

-2H, -00G K,,+20D, +20H | Q+0*M ®)

which can be condensed in the foaio) = boa™ + byt + ... +bjg™? 7+ ... +byo+ b =0
The coefficientty = 16047 daxtax + Ohi(daxls® + daxLa?)/ ] [dayclay + Ghi(dayLs® + dayLs®)/ 2] is
quickly calculable and, choosing six valugs(i = 1, 2, ..., 6) arbitrarily, it is simple to
evaluate the determinanis(g) and E¢(—¢) numerically and then compose two uncoupled
6x6 algebraic systems for the other unknown coefiisib;:
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Fig. 2: (a) elliptical path of rotor centrBy(=r1/e), of back and front journal box{ =r;/e and
Rs=r4/€) and of rotor axisR, = | ¢ + 2 e), for @ = 0.75; (b) double looped path of point

O: in the rotating fram®3& /0o, for 2= 0.8.
DataKs, =K =1, K3y = K4y = 3,Jd = 0.1,Ja = 0.2,L3 =0.3,/ =1, d1 = d2 = d3x = d4x = d3y = d4y
=0.1,dn = 0.1,d, = 0.05.
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Fig. 3: Stability threshold fails = dsx = dax = dzy = day (0 =d» = 0,dni = 0.02)
(a): influence of support anisotropds & 0.08,J, = 0.1); (b) gyro effect{yx = 0.9,K, = 1.1);
(c): influence of support asymme (Jg=0.1,J,=0.1.
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Once calculated thig's, the stability analysis can be carried out lngkior the sign changes
in the sequence of the Routh-Hurwitz determinahke application of this approach to the
full speed range permits identifying the influenaiethe various physical parameters and
finding the thresholds of stability, i. e. the \osis damping needed to nullify the destabilizing
effect of hysteresis.

Figure 3a reports the stability threshold in degee@ on the rotor location along the shaft

and shows the influence of the support stiffnesgnasetry in the horizontal and vertical




planes. The increase of the stiffness anisotrogrones the stability, specially if the rotor is
centred in the shaft, in which case no externatous dissipation is indeed required over a
certain rather low asymmetry threshold. Figure Bbws similar plots focusing on the gyro
effect, which exerts a slight destabilizing effabie case of a spherical ellipsoid of inertia (
= Jg) requires the lowest additional viscous dampingtaédilize the rotor whirl. The influence
of the elastic dissymmetry between the front ancklsuspension is shown in Fig. 3¢, which
might be prolonged fokz > 0.5 by mirror interchange of the two lower cuenand indicates
the convenience of a greater flexibility in the gag closer to the rotor.

The stiffness anisotropy effect may be fairly highted considering a centred rotor wik

= Kax = Kyl 2, Ky = Kay = Ky/2, di = dr = 0 anddsy = dax = dy = day = dJ/2, where the conical
wobbling of the rotor axis is uncoupled with théext motions and is stable. PuttiKg = X,
X3+ Xs=2Xs, Y1 =Y, Ya+ Ys = 2, Kijnt = —2Kjz13 = —2Kjp14 = 1, Kjzz = XKjzaa = 1 +K; (for

= x ory), the stability approach leads to the sixth degrharacteristic equatiorHf +
Adn?) (A + VA + &) + FPAA, + FPHIA(A + &) + A(Ac+ )] = 0, whereH = 1 + Ao
1Q, Ax = Ky + 2050, Ay = Ky + 2ds0. In the absence of hysteresis, this equation besom
AA/L + 1% + (A« +A)(1 + 1i6°) + 1 = 0, whence either 1 +&/=- 1/A,or 1 + 1% = -
1A, i. e. D0® + (1 +K, ory)02 + 2ds0 + Ky ory = 0, whose roots have negative real parts by
the Routh-Hurwitz criterion. In the presence oftbyssis, it is verifiable that the fifth Routh-
Hurwitz determinantRHs may become critical on increasing. Assuming no viscous
damping and supposing realistically thatd{2/2)*> << 1, this determinant may be
approximated byRHs 0 (2 + Ky + Ky)(KKy)?(2dhi 1Q*{(K, — Ky)? = 8dn[(Ky — Ko)* +
2(K«Ky)*}, whence the stability limit

| KK, |< 1 1
Ky =K,| {16d3 2

(7)

Is obtained for every angular speed. This resuleesy with Figg. 3abc and points out the
strong stabilizing effect of the elastic asymmetiyhe supports.

Concluding, the anisotropic suspension stiffnesa aftating machine in the two transverse
bending planes produces ellipticity of the rot@jectory and of the axis conical locus, but
appears indeed a very convenient technique to emagtitthe destabilising effect of the shaft
internal hysteresis in the supercritical regime.
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