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ABSTRACT 
The mechanical behavior of V-belt variators during the 

speed ratio shift is different from the steady operation as a gross 
radial motion of the belt is superimposed to the circumferential 
motion. The theoretical analysis involves equilibrium equations 
similar to the steady case, but requires a re-formulation of the 
mass conservation condition making use of the Reynolds 
transport theorem. The mathematical model of the belt-pulley 
coupling implies the repeated numerical solution of a strongly 
non-linear differential system. Nevertheless, an attentive 
observation of the numerical diagrams suggests simple and 
useful closed-form approximations for the four possible 
working modes of any pulley, opening/closing, driver/driven, 
whose validity ranges over most practical cases. The present 
analysis focuses on the development of such simplified 
solutions, succeeding in an excellent matching with the 
numerical plots, and on the comparison of the theory with some 
experimental tests on a motorcycle variator, revealing a very 
good agreement. 

 
1. INTRODUCTION 

The operative condition of the continuously variable 
transmissions (CVT) for the vehicle application consists 
typically in a sequence of up-shift and down-shift phases of the 
speed ratio. The shift mechanics of V-belt variators differs from 
the steady operation due to the gross radial motion of the belt 
toward the inside/outside of the groove during the 
opening/closing of the half-pulleys. 

In case of small power, as for example in motorcycles, a 
large use of rubber V-belt variators is now encountered since 
many years, while metal V-belt CVT's have just grown up 
widely in the automotive field in the last two decades. 

The theory of the steady mechanics of rubber V-belt drives 
is now well-established [1-5], while the transient state has just 
begun to be studied by a rather limited number of researchers 

(e. g. see [6-11]), using different approaches for rubber belt 
variators and metal push-belt CVT's. In the last case, the pulley 
deformation is of the same order of magnitude of the belt or 
higher, so that the tension and penetration distributions appear 
quite different. 

References [12-14] report some theoretical-experimental 
researches on the mechanics of rubber belt variators and on the 
devices employed to produce the belt forcing, usually by 
loading springs on the driven side, and to control the speed 
ratio, generally by centrifugal masses on the driver side, where 
proper tracks are created to get an efficient correlation between 
the engine speed and the speed ratio. 

With the purpose of affording useful and practical tools for 
the drive design or inspection, the full mathematical model of 
reference [8] is here assumed as starting point for the 
construction of simple and practical approximate solutions. The 
theory of [8] was developed for a rubber belt and the final 
results involved the presence of adhesive or adhesive-like sub-
regions inside the arc of contact, for the closing or opening 
pulleys respectively. Proofs of the existence or non-existence of 
these sub-regions were also given. 

The solution of the full differential system is rather 
cumbersome, due to its strong non-linearity, and may be faced 
by Runge-Kutta routines, starting for example from the exit 
point of the wrap arc and reiterating the procedure by a sort of 
shooting technique until all the external boundary conditions are 
fulfilled (wrap arc, applied torque and axial thrust). 

Nevertheless, examining a great deal of numerical diagrams, 
several particular features may be identified for the various 
cases, suggesting to develop simpler approximate solutions, 
valid throughout a wide range of practical cases. These closed-
form approximations give an excellent fit and offer a very fine 
agreement with some experimental bench tests on rubber belt 
variators. 
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2. OUTLINE OF DRIVE SHIFT THEORY 
The belt is considered as a one-dimensional continuous 

material flowing inside a stream tube of negligible cross-section 
formed by its own external surface, which is in motion in shift 
conditions. A dihedral control volume is considered and the 
Reynolds transport theorem is applied (see and refer to Fig. 1 
for the notation). 

Indicating with x = (r∞ − r) /r∞ the dimensionless elastic 
penetration of the belt, scaled by the nominal radius r∞ (wrap 
radius for infinite transverse stiffness of the belt in the axial 
direction), and denoting the partial differentiation with respect 
to θ with primes, the geometrical condition r' = − r tanχ 
becomes 

( ) χtan1 xx −=′    →   x' ≈ tanχ (1), (1abr.) 

where its abridged form is reported on the right, neglecting x << 
1. In the following, many equations with the numbering (…) 
will be rewritten on their right in an approximate form (…abr.), 
neglecting small terms. 

The total time derivative of the radial coordinate of a 
moving belt element is written as the sum of a local and a 

convective term, dr/dt = r& + θ& r', where dots indicate the partial 
differentiation with respect to the time t, and this relationship 
involves that −v sinδ = r&  − v cosδ tanχ by Fig. 1a. On the other 
hand, the triangle of velocities yields v cosδ − ω⋅r − v⋅sinδ tanγ  
= 0, where γ is the sliding angle in the plane of rotation. 
Introducing the dimensionless shift speed ρ = r& /(ω⋅r) ≅ 

∞r& /(ω⋅ r∞), which is presumed of the same order of magnitude 

of the strain variables of the belt (x, χ and the belt elongation ε, 
all of order ∼ 1/1000 roughly), such geometrical-kinematical 
relationships can be combined into 

γχ
γρ

ω
δ

tantan1

tan1cos

−
−=

⋅r
v

 (2) 

and it is observable that, if χρ tan=  and 1 − tanχ tanγ ≠ 0, 

then v cosδ = ω⋅r and v sinδ = 0, i. e. there is adhesion between 
the belt and the pulley. Therefore, x' = (1 − x)ρ ≈ ρ along an 
adhesion region. 

Combining the Eulerian and Lagrangian formulations of the 
mass conservation condition, accounting for Eqs. (1-2), 
introducing the belt elongation ε = T/S//, equal to the ratio of the 
belt force T to the longitudinal stiffness S//,  one may arrive, as 
in [8], at the equation 

( ) ( ) ρχχ
ε

ε −
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1 uu    → 

   →   u' ≈ ε' + tanχ − ρ 

(3), (3abr.)

where u is the dimensionless circumferential component of the 
sliding speed, 
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or inversely 
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−+
=

tan1
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u

u
   →   

ρχ
γ

−
≈

tan
tan

u
 (4), (4abr.)

Applying the momentum transport theorem and neglecting 
much smaller terms, one may write 

( )[ ] wbbqvT Fi ′+−
∂
∂ 2

θ
 ≅ 0 (5)

where F'w is the resultant wall force per unit angle of contact, q 
is the unit length belt mass and qvb

2 is the momentum flux 
component in the belt direction, which is quite small in 
comparison with T and is assumed constant along the belt path. 
Thus, the actual belt force T and the elongation ε may be 

replaced in the analysis by the "dynamic" force T
~

 = T − qvb
2 

and the "dynamical" elongation ε~  = (T − qvb
2) /S//. 

Splitting the equilibrium condition (5) in the directions 
tangential and normal to the belt on the plane of rotation, 
indicating the transverse elasticity modulus with Ez, the 
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elementary axial force with dFz, the equivalent belt thickness 
and width with h and b, introducing the belt elastic parameter k 
= 2tanα S⊥/S//, where S⊥ = 2tanαEzhr∞

2 /b [N] is a transverse 
stiffness parameter of the belt-pulley coupling, one gets  

( ) ( )χβχεε +′+=′ tan1~~    →   ε~ ' ≈ ε~  tanβ (6), (6abr.)

( )( )
1

tancos

tan
1~

tantan11

2

−









−

−−=′

γα
βε

χβχ xkx
   → 

 →   







−≈

γα
βε
tancos

tan
1~

2
kx  

(7), (7abr.)

dFz =
( ) θ

χ
d

xxS

cos

1−⊥    →   F'z ≈ S⊥x (8), (8abr.)

where β, angle between the resultant elementary wall force and 
the radial direction, is given by 

tanβ = 
γααγ

γ
22 sinsin1tancos

sin

−+f

f
 (9)

Equation (7abr.) leads to three relevant relationships, which 
will be recalled in the following: 

for γ ≈ 0, ε~  ≈ k1x, where k1 = k
( )

α
α

tan

arctantan f+
 

for γ ≈ ± π /2, ε~  ≈ kx        (10 a,b,c) 

for γ ≈ ± π, ε~  ≈ k2x, where k2 = k
(((( ))))

α
α

tan
arctantan f−−−−

 (< 0 usually) 

We have thus four differential equations, Eqs. (1), (3), (6), 
(7), and one parametric equation, Eq. (4), in the five dependent 
variables x, ε~ , χ, u and γ, the first four of which are very small 
(<< 1), whilst the sliding angle γ may range between −π and 
+π:  the mathematical consistency is then established. 

The abridged relationships reported above on the right side 
ignore many small terms. Actually, the differential system 
appears of the "degenerescent" type, as it "degenerates" from 
the fourth to the third order when it is reduced to its abridged 
form (compare Eq. (7) and (7abr.)) and not all the boundary 
conditions can be fulfilled. The problem is then of the 
"boundary layer" type and the variables change rather smoothly 
along almost the whole arc of contact but exhibit large gradients 
near the boundaries, in order to match the boundary conditions. 
The abridged model is then applicable in the inside of the wrap 
arc, while a complete analysis, valid as far as the contact 
boundaries, must necessarily use the full equations. 

The full differential system may be solved only by 
numerical procedures, separately for each pulley, starting from 
one endpoint of the winding arc, where the vanishing of the 
transverse compression has to be imposed (x = 0) and 
proceeding towards the other endpoint, which is attained when 
the variable x vanishes again. As three initial conditions must be 
specified, for ε, χ, u (or else γ), these three values are to be 
modified by trial and error by a sort of shooting technique until 

the three requested "external" conditions are fulfilled: wrap arc 
width, force ratio Tout / Tin and axial thrust Fz = ∫wrap  arc zdF , 

calculable by Eq. (8). 
It was proved in reference [8] that an adhesive region must 

be present in the inside of the contact region of the closing 
pulleys (ρ > 0), while a quasi-adhesive region settles in the 
opening pulleys (ρ < 0). All the previous relationships are valid 
in the adhesive region, but considering now f as a variable 
adhesion factor fa ≤ fs, where fs is the coefficient of static 
friction, and γ as the angle γa of the resultant elementary 
adhesion force with the radial direction, whose values may be 
calculated by the equilibrium equations (6-7). The adherence 
limit is reached when fa = fs and it was also proved in [8] that 
the upstream boundary of the adhesive region requires fa ≥ f 
necessarily (i. e. fa = f if fs = f). 

As tanχ = ρ = constant and u = 0 along the adhesive region, 
Equation (3) gives ε' = 0 (constant belt force), while Equation 
(1) gives, e. g. with reference to the upstream endpoint U of the 
adhesive region, 

x = 1 − (1 − xU) exp[− ρ (θ − θU)]   → 

  →   x ≅ xU + ρ (θ − θU) 
(11), (11abr.)

so that the belt path has the shape of a logarithmic spiral, which, 
since x and ρ are very small, may be roughly confused with a 
linear spiral of Archimedes. Of course, the belt radius increases, 
at any fixed angular position, due to the pulley rotation, because 
ρ > 0. 

 
3. CLOSED-FORM APPROXIMATIONS 

Some typical features can be always identified in the 
diagrams of the numerical solutions. They are distinct for the 
four possible operation modes of the pulley, opening or closing, 
driver or driven, and permit constructing simple closed-form 
approximations for each mode, easier to handle for practical 
design purposes, by use of the abridged equations (…abr.) of the 
previous section. 

 
3.1. Opening Pulley 
3.1.1. Quasi-adhesive regions. In the opening pulley case 
(ρ < 0), a wide quasi-adhesive region settles inside the arc of 
contact, just downstream of a very short seating region. The last 
one is characterized by a radially inward sliding velocity (γ ≈ 
0), which yields the penetration xin ≈ inε~ /k1 at the start of the 

main internal region by Eq. (10 a) (here, the subscripts in and 
out will refer to the main internal region endpoints, where x ≠ 0, 
and not to the whole contact endpoints, where x = 0). 

Moreover, the sliding angle γ keeps quite small, negative 
and nearly constant along the quasi-adhesive region, while the 
gradients of the belt elongation ε~  and of the radial penetration 
x appear nearly constant and negative, so that the belt spirals 
outward in the motion direction. 

Accounting for such remarks, the values of the above 
gradients can be calculated by the previous equations. Firstly, 
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one derives ε~ ' ≈ ρ − tanχ by Eqs. (3abr., 4abr.) andε~ ≈ k1x by Eq. 
(10 a), and then, differentiating now the full equation (7), 
replacing the last results and accounting for the orders of 
magnitude of the variables, can obtain 

χ" ≈ 






 −−≈
′

−
1

tan
tan

1
~

~tan

kxx

χρχ
ε
εχ

 (12)

Since the plot of χ exhibits a local minimum in the quasi-
adhesive region, where χ' = 0 and χ" > 0, and is very flat in this 
region, also the second derivative χ" tends to vanish, as 
described in [4,8]. Therefore, Equation (12) permits writing 
tanχ ≈ ρ / (1 + k1) and the searched gradients turn out to be 

x' ≈ 
11 k+

ρ
 ε~ ' ≈ 

1

1

1 k

k

+
ρ

 (13 a,b)

Thus, moving ahead inside the quasi-adhesive region, one 
has, by Eqs. (13), 

ε~  ≈ inε~ + ( )ink

k θθρ
−

+ 1

1

1
     x ≈ ( )in

in

kk
θθρε

−
+

+
11 1

~
 (14 a,b)

As regards the main sliding region following the quasi-
adhesive arc, where the torque is transmitted from/to the pulley 
to/from the belt, different approximate solutions are to be 
chosen for the driver or driven cases, here indicated with the 
subscripts R and N respectively. 

 
3.1.2. Driver pulley. Sliding region and axial thrust. By 
inspection of several driver pulley solutions, it is observable 
that the sliding angle γ is negative and its absolute value 
increases nearly proportionally to the angular distance from the 
point O of virtual connection between the quasi-adhesive and 
sliding regions: γ(θ) ≈ θO − θ. Replacing this expression into 
Eqs. (9) and (6abr.) and neglecting the product sin2α sin2(θO − θ) 
<< 1, one gets the integrable form dε~ /ε~  ≈ f sin(θO − θ) dθ / 
[fcos(θO − θ) + tanα], yielding the cosine solution: 

(((( )))) (((( ))))
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The radial penetration is obtainable by substitution of ε~  
into Eq. (7abr.): 
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The angular boundary θO may be calculated in dependence 
on the entrance and exit values of the dynamical elongation, 

inRε~  and outRε~ , by use of Eq. (15): 
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where MR and rR are the driver torque and radius. 
Then, integrating Eqs. (14 b) and (16) along the arc of 

contact, one gets the axial force FzR 
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where Iseat. and Iunseat. are small corrections that take into 
consideration the decrease of the radial penetration in the 
seating and unseating region, which will be specified later on. 

As observable in Fig. 2, the described approximate solutions 
are in good accordance with the numerical ones. 

 
3.1.2. Driven pulley. Sliding region and axial thrust. 
The numerical solutions for the driven pulleys indicate a certain 
point O, located in practice at the beginning of the main sliding 
region, where tanχ = tanγ = x' = ε~ ' = 0, and point out also that 
dx/dε~  is nearly constant inside this region: (x − xO) / (ε~  − Oε~ ) 

≈ constant = m. 
Solving Eq. (7abr.) with respect to tanγ and observing that 

ε~ tanβ = cos2α tanγ ( ε~  − kN x), it is possible to get like in [2] 

( )( )( )
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( )( )( )xkxkf NN 21
22 ~~tan1cos~ −−−=′ εεααε  (20)

Moreover, integrating Eqs. (1abr., 3abr.), Equation (4abr.) 
permits writing 

x' = ρN + [ ε~ − Oε~ + x − xO − ρN (θ − θO)] / tanγ (21)

and, combining this result with Eqs. (19, 20), referring the 
subscript out to the end of the main sliding region and putting R 

= ( )( )( )outNNoutNoutNoutNN xkxkf 21
22 ~~tan1 −−− εεα , one may 

obtain 

mR2cosα = ρN R + [ outNε~ − Oε~ + xoutN − xO −  

                           ρN (θoutN − θO)]( outNε~ − kN xoutN) cosα (22)

where Oε~ and xO can be obtained by Eqs. (14). As xoutN = xO + 

m( outNε~ − Oε~ ) by the previous assumption, Equation (22) permits 

a quick determination of the slope parameter m by a few 
iterations, once θO, outNε~ and inNε~ are fixed. 

Replacing x = xO + m ( ε~  − Oε~ ) into Eq. (20) and minding 

that Oε~ = k1N xO by Eq. (10 a) or (19), as tanγO = 0, an integrable 

expression is obtainable: 
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which yields the hyperbolic cosine solution 
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where 

( )( )( )NN mkmkf 21
22 11tan1cos −−−= ααΩ  (26)

The solution (24-26) is similar to reference [14], which 
however dealt with a steady drive. 

The angular boundary θO may be calculated in dependence 
on the entrance and exit values of the dynamical elongation 
using Eq. (24): 
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(27)

where MN and rN are the driven torque and radius. 
The axial thrust can be obtained at last by the integration of 

Eq. (8abr.) 
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where Iseat. and Iunseat. have the same meaning of the driver case, 
to be specified later on. 
Figure 3 indicates a good accordance between the solutions of 
the full equations and the above approximations also for this 
case. 

 
3.2. Closing Pulley 
3.2.1. Adhesive regions. As mentioned in the previous 
section, the closing pulleys exhibit a large adhesive region 
inside the arc of contact, where the belt force and the belt angle 
are constant, ε~ ' = 0, tanχ = ρ > 0, so that the belt spirals 
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Figure 3. Opening driven pulley. Elongation ε, penetration x, 
inclination χ, sliding angle γ, versus angular coordinate θ. Data: 
α = 13°, f = 0.35, k = 0.15, εout = 0.001, qvb
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altogether inward in the rotation direction. This region is 
immediately downstream of a short seating region, where the 
sliding velocity is nearly radial and inward directed (γ ≈ 0), so 
that, at the entrance of the adhesive region, the radial 
penetration is xU ≈ inε~ /k1 by Eq. (10 a) and, moving ahead 

inside this region, one has by Eq. (11abr.) 

ε~ = inε~   x ≅ ( )in
in

k
θθρε −+

1

~
   (29)

It was also shown in [8] that all the variables are continuous 
at the downstream boundary D of the adhesive region save γ, 
which is subject to a certain jump ∆γ. The downstream value γD 
can be calculated by the equilibrium equation (7abr.) normal to 
the belt, in dependence on the elastic variables Dε~  = inε~ and xD 

= inε~  /k1 + ρ (θD − θin): 

( )
( ) αεα

αεγ
2

22

cos

1
~sin

tan~
tan −









−
+±=

DD

DD
D kx

kxf
 (30)

When choosing the sign of (30), one has to mind that γD is 
always in the first quadrant in the driven case, while in the 
driver case, γD is in the fourth or third quadrant for Dε~  > kxD or 

Dε~  < kxD respectively (see Eq. (7abr.)). 

 
3.2.2. Driver pulley. Sliding region and axial thrust. The 
sliding angle γ is negative and its magnitude increases nearly 
proportionally to the angular distance from the starting point D 
of the sliding region: γ(θ) ≈ γD − (θ − θD). Replacing this 
expression into Eq. (9), replacing then tanβ into the tangential 
equilibrium equation (6abr.) and neglecting the product sin2α 
sin2(γD + θD − θ) with respect to the unity, one gets the 
integrable form dε~ / ε~  ≈ f sin(γD + θD − θ) dθ /[f cos(γD + θD − 
θ) + tanα], giving the cosine solution: 
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The radial penetration is obtainable by substitution of ε~  
into the equilibrium equation normal to the belt (7abr.) 
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The quantities xD and γD are functions of the unknown 
internal boundary θD, which may be calculated in dependence 
on the entrance and exit values of the dynamical elongation, 

inRε~  and outRε~ , putting ε~  = outRε~  and θ = θoutR into Eq. (31): 
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Integrating Eq. (8abr.) along the whole arc of contact, one 
gets the axial force FzR 
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(34)

where Iseat. and Iunseat. are similar to the previous cases. 
Figure 4 compares the numerical solution and the above 

approximations for the present mode and a very fine agreement 
can be observed between the diagrams. 

 
3.2.3. Driven pulley. Sliding region and axial thrust. 
Similarly to the opening pulleys, the numerical solutions for the 
closing driven pulleys indicate a nearly linear relationship 
between x and ε~  inside the main sliding region, dx /dε~  ≈ 
constant = m, save some small deviation near the starting point 
D. Therefore, relationships similar to Eqs. (19-22) may be used, 
save the replacement of the subscript O with D, where Dε~ = inNε~  

and xD ≅ ( )inNDNNinN k θθρε −+1
~ . 

As the linear relationship between ε~  and x may be 
prolonged as far as a virtual initial point (Dε~ /k1N, Dε~ ) of the 

sliding region with a good approximation, compensating the 
small deviation mentioned above, it is possible to write xout 

= inNε~ /k1N + m ( outNε~ − inNε~ ) and Equation (22) leads to a quick 

determination of the slope parameter m by a few iterations, once 
θD,  outNε~ and inNε~ are fixed. 
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The subsequent procedure is quite similar to the opening 
pulley case, save replacing x = inNε~ /k1N + m ( ε~ − inNε~ ) into Eq. 

(20), and yields similar results 
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Despite the small discontinuity of x at point D, the overall fit 
with the numerical diagrams is quite satisfactory. 

The angular boundary θD may be calculated using Eq. (35): 
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and the axial thrust can be obtained at last by the integration of 
Eq. (8abr.) 
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Also the above approximations give a very good fit, as 

observable in Fig. 5. 
 

3.3. Seating and Unseating Regions 
The simplified analysis described so far ignores the short 

seating and unseating regions, where the belt transverse 
compression x decreases until vanishing at the outer ends of the 
wrap arc. 

Reference [15] shows that the elastic belt arching in the free 
span is negligible for V-belts, due to the gradual penetration of 
the belt into the groove, which flattens the bending line, so that 
there is very little difference with the circular-straight path of a 
perfectly flexible belt. Nevertheless, as the steady model of [5] 
does not apply to transient conditions, the boundary analysis of 
[4] will here be used and the conventional bending effect will 
be included. 

Assuming that the sliding direction is nearly radial (γ ≈ 0 in 
the seating region and γ ≈ π in the unseating one) and replacing 
χ' with x", Equation (7abr.) gives rise to two second order 
differential equations, for the entrance and exit regions: 
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These equations are valid for opening or closing, driver or 
driven pulleys and accounting for Eqs. (10 a,c), one has to put 
kseat. = k1 > 0 and kunseat. = k2 < 0 (k2 is negative as generally f > 
tanα for rubber belt variators). Therefore, hyperbolic or 
trigonometric solutions arise in the two cases. The two 
integration constants may be determined imposing x = 0 at the 
outer end of the contact and x = xin,out at an "artificial" inner 
connection point with the main contact region. Thus, a new 
unknown arises, i. e. the angular extent ∆θb of the boundary 
region, which can be calculated however by simply imposing 
the vanishing of the gradient x' at the inner end, where the 
gradient ceases indeed to be large. Then 
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As the coefficients outink ,2,1 ε  of the independent variable θ 

are very large, the variable x changes very rapidly. Moreover, 
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the unseating angular width is ∆θunseat. = 

( ) 1~1arctan~ 2
22 −−− outoutout kxk εε , while the seating region 

width ∆θseat. appears to diverge, but the exponential decay is 
quite sharp all the same, with a rapid asymptotic matching with 
the inner region. 

Summarizing, the integrals of Eqs. (18), (28), (34), (38) can 
be corrected, for the sake of a greater precision, subtracting the 
axial thrust losses in the boundary regions: 
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4. EXPERIMENTATION 

Some experimental tests were carried out on a continuously 
variable transmission (CVT) using the test bench of Fig. 6, 
which was widely described in [13-14]. 

A DC electric motor drove the transmission, while a 
pneumatically operated disk brake applied the resistant torque. 
The continuously variable unit consisted in a small power 
motorcycle variator with a downstream reduction gearing of 
ratio 13:1 and a centrifugal clutch, which was blocked during 
the tests. Another gear coupling was connected upstream of the 
variator, stepping up the speed with a ratio reciprocal of the 
downstream gears, in order to avoid too high speeds of the 
driving motor. 

The speed and torque were measured on the driver and 
driven sides by means of two speed-torque meters of the strain-
gauge type and the winding radius changes of both pulleys were 
measured by two LASER sensors. 

The electric signals were channelled to a data acquisition 
system and worked out by a special software. The data were 
processed by a low-pass Butterworth filter of the first order with 
phase lag retrieval, whose cut-off frequency was equal to the 
fundamental harmonic, determined by FFT. 

The belt stiffness in the longitudinal and transverse 
directions was measured on a material testing machine for 
tensile/compression measurements, obtaining the values, S// = 
59000 N, S⊥ = 15000 N (for speed ratio 1:1). Load tests on a 
clamped piece of belt gave the flexural stiffness Sf = 6500 Nmm 

The experimental evaluation of the axial thrust was indirect, 
as it was calculated using the measures of the wrap radii and the 
knowledge of the operative characteristics of the two actuators 
(see Fig. 7). 

On the driver side, a centrifugal mass system adjusted the 
speed ratio to the input speed. The geometrical shape of the 
centrifugal mass tracks had been detected optically with a great 

accuracy, as reported in [13], and permitted correlating the 
driver axial thrust with the axial position of the movable half-
pulley, i. e. with the belt winding radius, by use of the principle 
of virtual work, 

FzR ≅ 
R

MMR

dr

drrM

α
ω
tan2

2

 (44)

 
where M is the total centrifugal mass, rM indicates its radial 
position and drM /drR was calculated in dependence of the 
profile of the centrifugal ramp. 

On the driven pulley, a loading spring generated the belt 
forcing and moreover, the axial thrust was corrected by the 

curved ramp movable flange 

 roller 

fixed flange 

 plane ramp 

    belt 

    belt 

fixed 
flange 

compression spring 

  torque cam movable flange 

Figure 7. Driver and driven actuators 
 

Figure 6. Experimental test bench. 
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resistant torque through a suitable helical shape of the coupling 
tracks between the movable and fixed half-pulleys. The total 
axial thrust was [13]: 
 

FzN  ≅ (((( )))) h
Nmov

N d
M

rKF δα∆ tan
2

tan2 .
0 ++++−−−−++++  (45)

 
where F0 is the pre-load in the fully closed configuration of the 
half-pulleys, K the spring stiffness, −2∆rN tanα (> 0) the 
additional spring compression deflection, δh and d the helix 
angle and diameter and Mmov.N the driven torque fraction 
absorbed by the guide of the movable half-pulley. 

Table 1 reports the data of the characteristic parameters of 
the CVT. 

The efficiency losses and the moments of inertia of the CVT 
were evaluated running the pulleys without the belt and then, 
the measured torque on the input shaft was curtailed of the 
torque lost in the upstream gears and of the inertia torque, while 
the output shaft torque was raised likewise due to the 
downstream power losses and inertia. 

Shift tests were performed on the described test bench, for 
various resistant torques and shift speeds, and all the variables 
were measured for each pulley at regularly spaced time instants. 

Starting from the experimental evaluation of the axial forces 
FzR and FzN, one of them was chosen as an entry for the 
theoretical model, and to be precise the axial thrust on the 
driven side, and the calculation was developed using the 
previous analytical model as far as evaluating the other axial 
force, on the driver side, in order to compare with the 
experimental result. 

In practice, the two unknowns, inNε~ , "dynamical" elongation 

in the slack strand, and θD or θO angular coordinate of the 
boundary point separating the adhesive or quasi-adhesive region 
from the main sliding region, were changed by a systematic trial 
and error procedure, until the torque and thrust equations were 
satisfied with an acceptable accordance with the experimental 
data. 

Then, knowing the elongation entries, inRε~  = outNε~  and outRε~  

= inNε~ , for the driver pulley, the angular coordinate of the 

starting point of the sliding region was calculated by trial and 
error, until the torque equation was fulfilled by the experimental 
torque datum. Finally, the theoretical axial thrust on the driver 
side was calculated, in practice in dependence on the driven 
axial thrust, and was compared with its experimental 
counterpart. 

Figures 8 and 9 show examples of the experimental 
diagrams of the radii, speeds, torques and axial forces during a 
shift up and a shift down phase. The driver theoretical axial 
thrust is reported in the figures and a fine agreement can be 
clearly observed between the theory and the experiments 

 
belt length    758 mm 

centre distance    255 mm 

belt width    15.5 mm 

unit length mass of belt   0.124 g/mm 

longitudinal stiffness   S// = 59000 N 

axial stiffness (for speed ratio 1:1)  S⊥ = 15000 N 

groove angle    13 deg 

belt-pulley coefficient of friction  0.4 

total centrifugal mass (primary actuator) 42.6 g 

spring stiffness (secondary actuator)  4.9 N/mm 

axial pre-load (secondary actuator)  275 N 

angle of helical guide   41 deg 

 

Table 1. Variator data 

. 
 

Figure 8. Shift up test. Data: α = 13°, f = 0.4, Sl = 59000 N, S⊥ 
= 15000 N (for ωN /ωR = 1) 
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S⊥ = 15000 N (for ωN /ωR = 1) 
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5. CONCLUSION 
The present analysis starts from a complete mathematical 

model for the mechanical behavior of the rubber belt variators 
during the ratio shift, which is based on a new formulation of 
the mass conservation condition, imposing the balance of the 
mass increase inside a fixed elementary control volume and the 
mass flux through its control surface. By a careful examination 
of many complete numerical solutions, a set of easily calculable 
closed-form approximations is constructed, applicable to a large 
variety of different cases, of opening or closing, driver or driven 
pulleys, with the aim at providing a quick tool for the design 
and the analysis of the rubber belt CVT's. 

The approximate solutions show a very good matching with 
the numerical solutions of the full model and may be also 
conveniently applied to compare the theory with the 
experimental results. For this purpose, several shift phases, 
more or less rapid, were carried out on a small rubber belt 
variator mounted on a test bench. Series of measures of the 
wrap radii and of the torque and the speed on the driving and 
driven shafts were taken at equally spaced time instants and 
collected to be worked out. The axial thrust on the one and the 
other pulley was measured in an indirect way, using the instant 
wrap radii and the knowledge of the operative characteristics of 
the actuators. The correspondence of the axial thrust, such as 
calculable by the theory and as given by the experiments, turns 
out to be acceptable, which may be retained as a validation of 
the approximate model.  
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