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ABSTRACT

The mechanical behavior of V-belt variators duritige
speed ratio shift is different from the steady agien as a gross
radial motion of the belt is superimposed to thewnferential
motion. The theoretical analysis involves equililoni equations
similar to the steady case, but requires a re-ftatian of the
mass conservation condition making use of the Rédgno
transport theorem. The mathematical model of tHepudley
coupling implies the repeated numerical solutioradaftrongly
non-linear differential system. Nevertheless, ariergive
observation of the numerical diagrams suggests Isirapd
useful closed-form approximations for the four phlss
working modes of any pulley, opening/closing, drideven,
whose validity ranges over most practical case® plresent
analysis focuses on the development of such siiglif
solutions, succeeding in an excellent matching witie
numerical plots, and on the comparison of the thagth some
experimental tests on a motorcycle variator, remgah very
good agreement.

1. INTRODUCTION

The operative condition of the continuously vargbl
transmissions (CVT) for the vehicle application sists
typically in a sequence of up-shift and down-spifases of the
speed ratio. The shift mechanics of V-belt varistiffers from
the steady operation due to the gross radial matfotme belt
toward the inside/outside of the groove during
opening/closing of the half-pulleys.

In case of small power, as for example in motoeycla
large use of rubber V-belt variators is now enceted since
many years, while metal V-belt CVT's have just gnowp
widely in the automotive field in the last two ddea.

The theory of the steady mechanics of rubber V-theltes
is now well-established [1-5], while the transistdte has just
begun to be studied by a rather limited numberestarchers
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(e. g. see [6-11]), using different approaches rfdsber belt
variators and metal push-belt CVT's. In the lasecghe pulley
deformation is of the same order of magnitude ef belt or
higher, so that the tension and penetration digiohs appear
quite different.

References [12-14] report some theoretical-expeariaie
researches on the mechanics of rubber belt vasiatod on the
devices employed to produce the belt forcing, ugubly
loading springs on the driven side, and to conthel speed
ratio, generally by centrifugal masses on the drside, where
proper tracks are created to get an efficient ¢atioen between
the engine speed and the speed ratio.

With the purpose of affording useful and practigadls for
the drive design or inspection, the full mathenatimodel of
reference [8] is here assumed as starting point tfe
construction of simple and practical approximateitsans. The
theory of [8] was developed for a rubber belt ahd final
results involved the presence of adhesive or adédikie sub-
regions inside the arc of contact, for the closargopening
pulleys respectively. Proofs of the existence ar-aristence of
these sub-regions were also given.

The solution of the full differential system is hat
cumbersome, due to its strong non-linearity, angt be faced
by Runge-Kutta routines, starting for example frtime exit
point of the wrap arc and reiterating the procedwre sort of
shooting technique until all the external boundzogditions are
fulfilled (wrap arc, applied torque and axial thus

Nevertheless, examining a great deal of numeriegrdms,
several particular features may be identified foe tvarious
cases, suggesting to develop simpler approximakaticos,
valid throughout a wide range of practical casdwesE closed-
form approximations give an excellent fit and offewery fine
agreement with some experimental bench tests oberubelt
variators.
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2. OUTLINE OF DRIVE SHIFT THEORY

The belt is considered as a one-dimensional cootisiu
material flowing inside a stream tube of negligibtess-section
formed by its own external surface, which is in imotin shift
conditions. A dihedral control volume is consideraad the
Reynolds transport theorem is applied (see and tef&ig. 1
for the notation).

Indicating withx = (r, —r) /r, the dimensionless elastic
penetration of the belt, scaled by the nominaluadi, (wrap
radius for infinite transverse stiffness of thethal the axial
direction), and denoting the partial differentiatiith respect
to & with primes, the geometrical condition = — r tany
becomes

X =[-x)tany - x=tany (1), (Zeor)

where its abridged form is reported on the rigbglactingx <<
1. In the following, many equations with the nunibgr(...)
will be rewritten on their right in an approximetam (...ap),
neglecting small terms.

The total time derivative of the radial coordinaté a
moving belt element is written as the sum of a llcad a
convective termdr/dt = f + 8r', where dots indicate the partial
differentiation with respect to the timte and this relationship
involves that-v sind= f — v cosdtany by Fig. 1a. On the other
hand, the triangle of velocities yieldo0sd — ait — v&indtany
= 0, wherey is the sliding angle in the plane of rotation.
Introducing the dimensionless shift spegd= r/(«d) O
r, /(a11.), which is presumed of the same order of magnitude

of the strain variables of the bek, (y and the belt elongatios
all of orderd 1/1000 roughly), such geometrical-kinematical
relationships can be combined into

vcoso _ 1-ptany
wlr 1-tanytany

)

and it is observable that, ip=tany and 1- tany tanyz O,

thenv cosd = «ii andv sind= 0, i. e. there is adhesion between
the belt and the pulley. Thereforé,= (1 - X)p = p along an
adhesion region.

Combining the Eulerian and Lagrangian formulatioh¢he
mass conservation condition, accounting for Eqgs:2)(1
introducing the belt elongation= T/S,, equal to the ratio of the
belt forceT to the longitudinal stiffness,, one may arrive, as
in [8], at the equation

r_ £ -X)|-
u —(1+u)[m+tan)((1 )()} p - (3)s (3uwr)

- uU'=é&+tany-p
whereu is the dimensionless circumferential component of the
sliding speed,
tany-p tan
1-tanytany

o= Vaie gy = vCcosd _1:(
wlt

wlt

r instantaneous belt radius

ip unit vector parallel to belt line

ir radial unit vector

ig circumferential unit vector

v total belt velocity in rotation plane

vsigbelt sliding velocity in rotatiol
plane

y sliding angle in rotation plane

O belt penetration angle

@ angular coordinate

p dimensionless shift speed

X belt inclination

w pulley angular velocity

axis of symmetry of belt element orthogonal to
helt line

I~ (2) (axial direction
> ig (circumferential direction)
S i) (belt line direction)

C center of belt element
ABC pulley meridian plane
(b) ACD plane of rotation

ABD plane tangent to pullgy
surface

BCD sliding plane

‘ dF, normal elementary wall force
>0 f coefficient of friction

a groove half-angle

14 sliding angle in plane qf
rotation

7] sliding angle on pulley wall
(tany = cosa tany)

Figure 1. (a) BIt element passing through cont
volume, triangle of velocities. (b) Belt-pulley qaing

or inversely

any = u
(

— any =
1+u)tany - p 4

v
tany - p
Applying the momentum transport theorem and neiglgct
much smaller terms, one may write
0 - .
%[(T ~a)i,]+F, 00
whereF',, is the resultant wall force per unit angle of ceahtg
is the unit length belt mass amph’ is the momentum flux
component in the belt direction, which is quite Bmia
comparison withT and is assumed constant along the belt path.
Thus, the actual belt forc& and the elongatiore may be
replaced in the analysis by the "dynamic" fofte= T - qw’
and the "dynamical" elongation = (T —qw?) /S,
Splitting the equilibrium condition (5) in the dat®ons
tangential and normal to the belt on the plane aiftion,
indicating the transverse elasticity modulus wil, the

(4), (4wr)

®)
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elementary axial force witllF,, the equivalent belt thickness
and width withh andb, introducing the belt elastic parameker

= 2tano SJ/S,;, whereS; = 2taraEhr..2 /b [N] is a transverse

stiffness parameter of the belt-pulley couplinge gets

=+ y)tan(p+y) - &'=Z tap (6), (Gaor)
¥ = kx(l— x)(l— tanﬂtan)() 1
- tang
El-—
[ cog atan yJ (7), (Taor)
- kx= E[l—&J
cog atany
ar,= SN gp s (8), (8n)

cosy

wheref, angle between the resultant elementary wall ferod
the radial direction, is given by

tang = f siny

©)

f cosy + tana/1-sin’ asin’ y

Equation (%) leads to three relevant relationships, which
will be recalled in the following:
tan(a + arctanf )

for y=0, £ =kx, wherek; =k
tara

for y=+ 11/2, £ =kx (10 a,b,c)
tar(a —arctanf )
tana
We have thus four differential equations, Eqgs. (3), (6),

(7), and one parametric equation, Eq. (4), in the dependent
variablesx, £, x, uandy the first four of which are very small
(<< 1), whilst the sliding anglgr may range betweensr and
+7z. the mathematical consistency is then established.

The abridged relationships reported above on tiji& side
ignore many small terms. Actually, the differentigystem
appears of the "degenerescent” type, as it "degtsdrfrom
the fourth to the third order when it is reducedtsoabridged
form (compare Eq. (7) and £f) and not all the boundary
conditions can be fulfiled. The problem is then tfe
"boundary layer" type and the variables changeeratmoothly
along almost the whole arc of contact but exhénigé gradients
near the boundaries, in order to match the bounciamgitions.
The abridged model is then applicable in the insifithe wrap
arc, while a complete analysis, valid as far as ¢batact
boundaries, must necessarily use the full equations

The full differential system may be solved only by
numerical procedures, separately for each pultaytisg from
one endpoint of the winding arc, where the vanighifh the
transverse compression has to be imposed=(0) and
proceeding towards the other endpoint, which igired when
the variablex vanishes again. As three initial conditions must b
specified, forg, x, u (or else)), these three values are to be
modified by trial and error by a sort of shootieghnique until

for y=+ 11 £ =k, wherek, =k (< 0 usually)

the three requested "external” conditions arelledfi wrap arc
width, force ratioT,, / Ty, and axial thrusf, = J'

wrap arc 2’
calculable by Eq. (8).

It was proved in reference [8] that an adhesivéoregqust
be present in the inside of the contact regionhef tlosing
pulleys (@ > 0), while a quasi-adhesive region settles in the
opening pulleysg < 0). All the previous relationships are valid
in the adhesive region, but considering nbwas a variable
adhesion factoff, < f;, wherefs is the coefficient of static
friction, and y as the angleys, of the resultant elementary
adhesion force with the radial direction, whoseugal may be
calculated by the equilibrium equations (6-7). Tddherence
limit is reached wheffy, = fs and it was also proved in [8] that
the upstream boundary of the adhesive region regir> f
necessarily (i. €, =fif f; =f).

As tany = p = constant andi = 0 along the adhesive region,
Equation (3) giveg = 0 (constant belt force), while Equation
(1) gives, e. g. with reference to the upstreanpeimdU of the
adhesive region,

x=1-(1-xy)exp[-p(-&)] -
- xOxy+p(0-8)

so that the belt path has the shape of a logatkpiral, which,
sincex and p are very small, may be roughly confused with a
linear spiral of Archimedes. Of course, the bettina increases,
at any fixed angular position, due to the pulletgtion, because
p>0.

(11), (11w

3. CLOSED-FORM APPROXIMATIONS
Some typical features can be always identified he t

diagrams of the numerical solutions. They are miistfor the
four possible operation modes of the pulley, opgminclosing,
driver or driven, and permit constructing simplesgd-form
approximations for each mode, easier to handlepfactical
design purposes, by use of the abridged equationg)(of the
previous section.

3.1. Opening Pulley

3.1.1. Quasi-adhesive regions. In the opening pulley case
(o < 0), a wide quasi-adhesive region settles infligearc of
contact, just downstream of a very short seatiggre The last
one is characterized by a radially inward slidirgoeity (y=
0), which yields the penetration, = &, /k; at the start of the

main internal region by Eq. (10 a) (here, the stiptcin and
outwill refer to the main internal region endpoint)exex # 0,
and not to the whole contact endpoints, where0).

Moreover, the sliding angl¢ keeps quite small, negative
and nearly constant along the quasi-adhesive regibite the
gradients of the belt elongatian and of the radial penetration
X appear nearly constant and negative, so that thespieals
outward in the motion direction.

Accounting for such remarks, the values of the abov
gradients can be calculated by the previous equatibirstly,
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one derivess ' = p —tany by Egs. (3or, 4arr) @ande = kyx by Eq.
(10 a), and then, differentiating now the full et (7),
replacing the last results and accounting for thdeis of
magnitude of the variables, can obtain

= tanx—ézl(tanx—
£ x

(12

p—tany
X

K,

Since the plot ofy exhibits a local minimum in the quasi-
adhesive region, whepg = 0 andy" > 0, and is very flat in this
region, also the second derivatiy¢ tends to vanish, as
described in [4,8]. Therefore, Equation (12) pesmitriting
tany= p/ (1 +k;) and the searched gradients turn out to be

k.0
1+k;

I: p EI:
1+k,

Thus, moving ahead inside the quasi-adhesive regioe
has, by Egs. (13),

(13a,b

x= o+ L(0-6,)

F=5+ 2 (0-0,)
o 1

I 1+k1

As regards the main sliding region following theagqu
adhesive arc, where the torque is transmitted twithe pulley
to/from the belt, different approximate solutionee a&o be
chosen for the driver or driven cases, here inditatith the
subscriptR andN respectively.

(14 a,b

3.1.2. Driver pulley. Sliding region and axial thrust. By
inspection of several driver pulley solutions, st abservable
that the sliding angley is negative and its absolute value
increases nearly proportionally to the angularagisé from the
point O of virtual connection between the quasi-adhesivé a
sliding regions: @ = & - 6. Replacing this expression into
Egs. (9) and (§,) and neglecting the product &nsir(& - )

<< 1, one gets the integrable foda /£ = f sin(@ — 6 dg/
[fcos@ - 6) + tamy], yielding the cosine solution:

; =[E +M(ﬁo ‘QHR)}[ f cod@, —9)+tana}

"R+, f +tana

(15)

The radial penetration is obtainable by substitutad £
into Eq. (Gwr):

(= Enr , PR 6, -8.) 1- f tana cod8, - 6)
kg 1+kg o % 1- f tana

The angular boundar$, may be calculated in dependence
on the entrance and exit values of the dynamiaahgation,

&, and &, by use of Eq. (15):

EoutR = EinR + M(eo - HinR) f COiHO - eoutR) +tana _
1+Kkg f +tang

} (16

0.2 180°
£l&out X

kX leout 3

\ 0.1° 90°
2 4 e X oo o

N
£l&ut
1 0.1° -90
Y
kX leout
0 -0.2° -180°
-240°¢ -180¢ o -120¢ -60° 0°

Figure 2. Opening driver pulley. Elongatian penetrationx,
inclination y, sliding angley, versus angular coordinag Data:
a = 13°,f = 0.35,k =0.15, &, = 0.001,q? = 0.0001,0 = -
0.0001. Dots: approximate solutions foF & + qw? andx by
Egs. (14-16)

Mg

=g -
inR
RSy

17)

whereMg andrg are the driver torque and radius.
Then, integrating Egs. (14 b) and (16) along the @i
contact, one gets the axial forfeég

Goutr = _ 2
Lt jxd@:ﬁ(eo_gm){ Pr J(go ) +
SD Gnr klR 1+ k1R 2
I: ;nR + (lfR J(go _ HlnR):“: goutR - 90 _1f_t?'r:asm(90utR - 90 ):| _
1R kg ana

I seat - I unseat (18)

where lgea and lynsear @are small corrections that take into
consideration the decrease of the radial penetraitio the
seating and unseating region, which will be spedifater on.

As observable in Fig. 2, the described approxiraatetions
are in good accordance with the numerical ones.

3.1.2. Driven pulley. Sliding region and axial thrust.
The numerical solutions for the driven pulleys gade a certain
point O, located in practice at the beginning of the nsdiding
region, where tgn=tany=x'= £' = 0, and point out also that
dxde is nearly constant inside this regior:{xo) / (€ —&;)
= constant =m.

Solving Eq. (%,) with respect to tagnand observing that
ZtanB= cosatany(& - ky X), it is possible to get like in [2]

(1— f % tan® a)(kle—E)(E ~ Ky X)

19
cosa (£ —k, x)

tany:\/
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£'= cosa'\/ (1— f 2 tan’ a)(kiNx—E)(E ~Kop X) (20 N 02 180°
&léou ¥ X v
Moreover, integrating Eqgs. £}, ), Equation (4y)

. L KX l&out 3 0.1° 90°
permits writing /
X'=pn+[E-E;+X—Xo— (8- 6)]/ tany (21 //y/

2 0.0° 0°
and, combining this result with Egs. (19, 20), mefg the y e
subscriptout to the end of the main sliding region and putfihg
= \/( - f tan anlN Xoun ~ outN)(EoutN - k2N XoutN) , One may ! eleow | | R
obtain Toa S

0 f -0.2° -180°
MRCoST = AR +[ £~ &5+ Xoun = Xo = . -240° -180° -120° -60° 0°

ﬂ\l(goutN HO)]( EGUIN_ I(N XoutN) cosr (22' g

~ . _ Figure 3. Opening driven pulley. Elongati@n penetrationx,
whereg, andxo can be obtained by Egs. (14). Asin= Xo inclination y, sliding angley, versus angular coordinatk Data:
m(€,,,,~ £, ) by the previous assumption, Equation (22) permits 5 = 13° f = 0.35 k = 0.15, &u = 0.001,qw? = 0.0001,0 = —

a quick determination of the slope parameterby a few 0.0001. Dots: approximate solutions fo= £ + qw’ andx by
iterations, oncé, &,,,ande,, are fixed. Egs. (14, 24-25)

Replacingx = Xo+ m (£ - &) into Eq. (20) and minding
that £, = ki Xo by Eq. (10 a) or (19), as tan= 0, an integrable

expression is obtainable: Eoun = {EinN + 11“"(0“ (6 =6y )}
1N
£'= cosaa/tl— f 2 tan? ajx (k 2) M. (27
14— TKon) oo Ooun =o)L} = Eppy +—2
{ 2k1N ( kzN ) [ ( outN ) ]} nN rN S,/

J (mky, ~1)(& -, ){(1— mk, )& -£,)+ 50(1_ E_N H 23)

N
whereMy andry are the driven torque and radius.

which yields the hyperbolic cosine solution The axial thrust can be obtained at last by thegiration of

Eq.
~ | = kinN q (&br)
&€= ‘EinN 1+k (5 elnN) = Bourn ~ (5 -0 )2
™ (24) Ez?: J'de:i"N (eo—emN)Jr[le j o
{1+M[cosh.(2(€ 6,)- 1]} fn h I
2k1N( kZN ) E p
= + ) N (g - g On — O + 28
X:|:£iLN+ ION (HO—HinN):|X |:k1N (1+k1N)( |nN):| outN o] ( )
Ky 1Ky
(@5, (kyp, = Koy, )( SINN2(6,,00 = 85 )
I’T‘I(k1N 2N) + mik;y =Koy J( SIN own "% _g Lo Loy
{l+m[cosh_(2(9 6, ) 1] 2(1_ meN) 0 outN (o] seat unseat
where wherelge, andl nsear have the same meaning of the driver case,
to be specified later on.
Q= cosa\/(l— f?tar? a)(mklN ~1)(1-mk,,) (26; Figure 3 indicates a good accordance between titists of
the full equations and the above approximations &s this
The solution (24-26) is similar to reference [14}hich case.
however dealt with a steady drive.
The angular boundarg, may be calculated in dependence 3.2. Closing Pulley
on the entrance and exit values of the dynamicahggztion 3.2.1. Adhesive regions. As mentioned in the previous
using Eq. (24): section, the closing pulleys exhibit a large adhesiegion

inside the arc of contact, where the belt force thedbelt angle
are constantg' = 0, tany = p > 0, so that the belt spirals
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altogether inward in the rotation direction. Thisgion is
immediately downstream of a short seating regiohere the
sliding velocity is nearly radial and inward diredt(y= 0), so
that, at the entrance of the adhesive region, thdiar

penetration isxy = £, /k; by Eq. (10 a) and, moving ahead

inside this region, one has by Eq. {1L

£=Z, xDi&+plo-0,) (29
It was also shown in [8] that all the variables enatinuous
at the downstream boundabBy of the adhesive region saye
which is subject to a certain jurafy; The downstream valug
can be calculated by the equilibrium equatiog,f/mormal to

the belt, in dependence on the elastic variables &, andxp
= &, i+ p(& -6

_ f(kxD + &, tan’ a) ! 30
anyo = i\/{ sina(g, —kx,) cofa (30,

When choosing the sign of (30), one has to mind jbais
always in the first quadrant in the driven casejlavin the
driver case is in the fourth or third quadrant fa, >kx or

£, <kxp respectively (see Eq. £7)).

3.2.2. Driver pulley. Sliding region and axial thrust. The

sliding angley is negative and its magnitude increases nearly

proportionally to the angular distance from thetstg pointD

of the sliding region:K6 = ) - (6 — &). Replacing this
expression into Eq. (9), replacing thenfanto the tangential

equilibrium equation (6,) and neglecting the product &n

sif()p + & — 6 with respect to the unity, one gets the

integrable formds /£ =fsin(p + & — 6 dO/[fcosip + & -
6 + tam), giving the cosine solution:
~_~ f cos(yD +6, —H)+tana

€= b f cosy, +tana (3L

The radial penetration is obtainable by substitutaf £
into the equilibrium equation normal to the bel,{7

(EmR tana )[1— f tanarcody,, + 6, - 9)] .
X= (32
ks tana + f cosy,

The quantitiesxp and ) are functions of the unknown
internal boundarnyé,, which may be calculated in dependence

on the entrance and exit values of the dynamiaahggtion,

& andg ., puttinge =¢ . andd= Grinto Eq. (31):
~ _~ |f cos(yD +6; —QomR)+ tana | _ 7 o Mg
outR inR f COS}/D + tana' inR rRS// (33}

U i~=— adhesion region—>{p
4 0.2° 180
&l&u
¥ X v
KX l&out 3 0.1° 90°
fa If
X = arctamp X
2 00° 0°
T a Ay
£ lgout 4
1 e 0.1° -90
fa If
r kX leout
0 -0.2° -180°
-240° -180° -120° -60° 0°

6

Figure 4. Closing driver pulley. Elongation penetrationx,
inclination x, sliding angley; adhesion factof, (f; = f), versus
angular coordinaté. Data:a = 13°,f = 0.35,k = 0.15, &, =
0.001,qw> = 0.0001,0 = 0.0001.Dots: approximate solutior
for = £ + qw? andx by Egs. (29-30, 31-32)

Integrating Eq. (8,) along the whole arc of contact, one
gets the axial forcE,g

F Foutr P 8. -8 2
En =5 (g, ~g,,) p, = J)

£.r tana 0 g (34)
* ke(tana + f cosyD){ aar = %0 ¥

+ 1 tanalsin(y, + Gy = Gour) = SINYo 1~ Ve = uncea

wherel ey andl nsear.are similar to the previous cases.

Figure 4 compares the numerical solution and theveb
approximations for the present mode and a verydigreement
can be observed between the diagrams.

3.2.3. Driven pulley. Sliding region and axial thrust.
Similarly to the opening pulleys, the numericaluians for the
closing driven pulleys indicate a nearly linearat&nship
betweenx and £ inside the main sliding regionx /dg =
constant =m, save some small deviation near the starting point
D. Therefore, relationships similar to Eqgs. (19-8&)y be used,
save the replacement of the subsc@ptith D, whereg, =&, ,
andxp [ EinN /klN + P (QD - ginN) :

As the linear relationship betweeds and x may be
prolonged as far as a virtual initial poinE/kiy, &) of the
sliding region with a good approximation, compeimgatthe
small deviation mentioned above, it is possiblewt@te Xqu
=g, [k + m (€~ &, ) and Equation (22) leads to a quick
determination of the slope parameteby a few iterations, once
&, &,,andeg,, are fixed.
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The subsequent procedure is quite similar to thenimg . U {adhesion regionp 02° 180
pulley case, save replacixg=¢€,, /kiy + m (€ —€,,,) into Eq. cle '
ut
(20), and yields similar results it nax oy
( ) KX l&out 3 i - 0.1° 90°
~ - ki = fo /f
E=E&n 1+—[cosh!2(€ 6)- 1] (35 a
; { 2k1N (1_ kZN) B ,\/:a}réctarp 14 0ot o
v X
_ ~.nN L km , o f o oo
X= K [cosh.Q(Q o, ) 1] (36 1 &5 Teout -0.1° -90
N I
KX feo oy
Despite the small discontinuity afat pointD, the overall fit 0 0.2° -180°
with the numerical diagrams is quite satisfactory. -240° -180° P -120° -60° 0°

The angular boundarg, may be calculated using Eqg. (35):
Figure 5. Closing driven pulley. Elongatian penetrationx,
inclination y, sliding angley; adhesion factof, (fs = f), versus

) 1]} = angular coordinaté. Data:a = 13°,f = 0.35,k = 0.15, & =
0.001,qw* = 0.0001,0 = 0.0001. Dots: approximate solutions

37 for = £ + qw? andx by Egs. (29-30, 35-36)

J

: -z (ki ~kon)
‘EoutN - ‘EinN {1+ 2k1N (1 kaN ) [COShQ(goutN

rS, Assuming that the sliding direction is nearly radie= O in
the seating region ang= 77in the unseating one) and replacing

and the axial thrust can be obtained at last byrtegration of X with X', Equation (4) gives rise to two second order

Eq. (84) differential equations, for the entrance and esgiions:
. r
k
Bourn _n 2 Xn _ si;itt,unseal X = _1 \
FzN — J‘ xd@ = |nN (9 emN) On (BD elnN) + o out (39;
glnN klN 2 '

These equations are valid for opening or closimgyed or
driven pulleys and accounting for Egs. (10 a,ce bas to put

. Kseat. = K1 > 0 andkynseat. = k2 < 0 (2 is negative as generalfy>
+ k, O =6 + (38) tana for rubber belt variators). Therefore, hyperbolic
N trigonometric solutions arise in the two cases. Tin®
integration constants may be determined impogirg0 at the
outer end of the contact and= X, o, at an "artificial" inner
rT1(k1,\I - kZN) sinhQ(HOmN —HD) Do | G connection point with the main contact region. Thasnew
2(1- mk,,) Q oun = b seat  Tunsea unknown arises, i. e. the angular extel#, of the boundary
region, which can be calculated however by simptpasing
Also the above approximations give a very good d, the yanishing of the gradient at the inner end, where the
observable in Fig. 5. gradient ceases indeed to be large. Then
k: ~ k:
3.3. Seating and Unseating Regions X = X 1- € |z, @) —&n 1_6_\/%(9_9'”) (40)
The simplified analysis described so far ignores short eating  “in k, ’

seating and unseating regions, where the belt \eass
compressiorx decreases until vanishing at the outer ends of the

wrap arc. . . Xunseating_ - ‘gout co l( (eout 9) -1+
Reference [15] shows that the elastic belt archirthe free k, Eou
span is negligible for V-belts, due to the graduehetration of

the belt into the groove, which flattens the begdine, so that Xo (41,
there is very little difference with the circuldraight path of a + [ 3 F{W,__ out ~ ]

perfectly flexible belt. Nevertheless, as the syeeddel of [5]

does not apply to transient conditions, the boundaalysis of

[4] will here be used and the conventional bendiffgct will As the coefficients. /Ik. | /e of the independent variab
be included. 3\/| 12|/ in,out p

OUI

are very large, the variablechanges very rapidly. Moreover,
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the unseating accuracy, as reported in [13], and permitted catirey the

angular width iS ABinseat. =
= = . . . driver axial thrust with the axial position of theovable half-
V™ Eou/ ke arctar\/(l— Xouko/Euf =1, while the seating region pulley, i. e. with the belt winding rF:aldius, by uskthe principle
width A6, appears to diverge, but the exponential decay is of virtual work,
quite sharp all the same, with a rapid asymptotiéciting with
the inner region. Mafr, dr,

Summarizing, the integrals of Egs. (18), (28), (38B) can 2tana drg
be corrected, for the sake of a greater precisiobtracting the
axial thrust losses in the boundary regions:

(44)

ZR

where M is the total centrifugal massy indicates its radial

AFz,seating_l —j‘”( . g)dg— £ 32 42 posi_tion anddry /_drR was calculated in dependence of the
Ty, e, Xin ~ Xseating/d0 = K ) profile of the centrifugal ramp.
On the driven pulley, a loading spring generatesl llelt
AF _ forcing and moreover, the axial thrust was cormdby the
z,unseating __ — (Bout _ _

T ~ "unseating ™ ,[,gum_ﬁgunseaﬁng(xout - Xunseating)dg - ;

~ ~ \32 2 \ A J ! /\
= Xout_‘gOUt Agunseating_ _M 1_Xg_u_tk2 -1 (43‘ .r"'/l/ ; X \>_£:— ! I T 1

k2 k2 gout 3~ H

2 Torque-spesd meters
i Laser sensore

4 Upstream gems
<

¢

4. EXPERIMENTATION

Some experimental tests were carried out on aroaotisly
variable transmission (CVT) using the test benchFmf. 6,
which was widely described in [13-14].

A DC electric motor drove the transmission, while a
pneumatically operated disk brake applied the tasigorque.
The continuously variable unit consisted in a snhpilwer
motorcycle variator with a downstream reduction rigp of
ratio 13:1 and a centrifugal clutch, which was kkst during
the tests. Another gear coupling was connectedegst of the
variator, stepping up the speed with a ratio real of the
downstream gears, in order to avoid too high speddhe
driving motor.

The speed and torque were measured on the drivéer an
driven sides by means of two speed-torque metetiseo$train-
gauge type and the winding radius changes of baltbys were
measured by two LASER sensors.

The electric signals were channelled to a data isitigm
system and worked out by a special software. Tha dere
processed by a low-pass Butterworth filter of iih&t brder with
phase lag retrieval, whose cut-off frequency wagaedo the
fundamental harmonic, determined by FFT.

The belt stiffness in the longitudinal and transeer
directions was measured on a material testing mackor
tensile/compression measurements, obtaining theesgh, =
59000 N,S; = 15000 N (for speed ratio 1:1). Load tests on a
clamped piece of belt gave the flexural stiffnss 6500 Nmm

The experimental evaluation of the axial thrust wakrect,
as it was calculated using the measures of the rmadipand the
knowledge of the operative characteristics of the actuators

Variator

i Downstiemn gears
[nsk Brake

Figure 6. Experimental test bench.

curved ramp movable flange torque cam movable flange

(see Fig. 7).

On the driver side, a centrifugal mass system é&eljuthe
speed ratio to the input speed. The geometricgbestud the
centrifugal mass tracks had been detected optiedtlya great

fixed flange

belt

Figure 7. Driver and driven actuators

8 Copyright © 2009 by ASME



12 G 60C
M[Nm] r[cm F.[N] :
10 5 500 " (the:fy =
\ N | l:ZF
8 4 400
Fz
6 3 g 9000 300
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s
4 2= A Mg 6000  20(
/
2 1 3000  100Q
M
0 0 0 0
0o 1 3. 4 5 o 1 2 3
5 t[s] t

Figure 8. Shift up test. Datar= 13°,f = 0.4,5 = 59000 NS,
= 15000 N (foray/ar = 1)

resistant torque through a suitable helical shdgheocoupling
tracks between the movable and fixed half-pulléjse total
axial thrust was [13]:

FnOF, + K(— 24, tana) + m%““tandh (45;

whereF, is the pre-load in the fully closed configuratiohthe
half-pulleys, K the spring stiffness-24ry tana (> 0) the
additional spring compression deflectiod, and d the helix
angle and diameter ant¥,.~ the driven torque fraction
absorbed by the guide of the movable half-pulley.

Table 1 reports the data of the characteristicrpaters of

12 6 60(¢
M[Nm] r[cm F.[N]
10 5 500
F
8 40( ,{
6 9000 300 Fan
n[rpm] Fr (theory
4 6000 20
2 3000 100
0 0 0 (0
0 1 2 3 4 5 0 1 2 3 4
5 t[s] t

Figure 9. Shift down test. Datar= 13°,f = 0.4,5 = 59000 N,
S, = 15000 N (foray/ar = 1)

Then, knowing the elongation entries,; = &

ouny @nd &

outR
= g, for the driver pulley, the angular coordinate thé

starting point of the sliding region was calculatadtrial and
error, until the torque equation was fulfilled betexperimental
torque datum. Finally, the theoretical axial thrastthe driver
side was calculated, in practice in dependencehendtiven
axial thrust, and was compared with its experinlenta
counterpart.

Figures 8 and 9 show examples of the experimental
diagrams of the radii, speeds, torques and axiakfoduring a
shift up and a shift down phase. The driver thecaktaxial
thrust is reported in the figures and a fine age@ntan be
clearly observed between the theory and the expeaisn

the CVT.
The efficiency losses and the moments of inertithefCVT

were evaluated running the pulleys without the laeltl then,

the measured torque on the input shaft was cudtaifethe
torque lost in the upstream gears and of the méstique, while

the output shaft torque was raised likewise due the
downstream power losses and inertia.

Shift tests were performed on the described testhyefor

various resistant torques and shift speeds, anthalvariables
were measured for each pulley at regularly spaoselinstants.

Starting from the experimental evaluation of thebforces

F.,r and F,\, one of them was chosen as an entry for the

theoretical model, and to be precise the axial sthan the
driven side, and the calculation was developed gudime

previous analytical model as far as evaluating dtfeer axial
force, on the driver side, in order to compare witie

experimental result.

In practice, the two unknowns,,, , "dynamical" elongation

in the slack strand, ané, or & angular coordinate of the

belt length 758 mm
centre distance 255 mm
belt width 15.5 mm
unit length mass of belt 0.124 g/mm
longitudinal stiffness S, =59000 N
axial stiffness (for speed ratio 1:1) S =15000 N
groove angle 13 deg
belt-pulley coefficient of friction 0.4

total centrifugal mass (primary actuator) 426 g
spring stiffness (secondary actuator) 4.9 N/mm
axial pre-load (secondary actuator) 275N
angle of helical guide 41 deg

boundary point separating the adhesive or quastsidd region
from the main sliding region, were changed by desyatic trial
and error procedure, until the torque and thrusiaégns were
satisfied with an acceptable accordance with theeemental
data.

Table 1. Variator data
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5. CONCLUSION

The present analysis starts from a complete mattieaha
model for the mechanical behavior of the rubbet bafiators
during the ratio shift, which is based on a newrfalation of
the mass conservation condition, imposing the lalaof the
mass increase inside a fixed elementary contralmeland the
mass flux through its control surface. By a carefxdmination
of many complete numerical solutions, a set oflgasilculable
closed-form approximations is constructed, appleab a large
variety of different cases, of opening or closidgyer or driven
pulleys, with the aim at providing a quick tool ftre design
and the analysis of the rubber belt CVT's.

The approximate solutions show a very good matchiitig
the numerical solutions of the full model and may &lso
conveniently applied to compare the
experimental results. For this purpose, severdft ghiases,
more or less rapid, were carried out on a smalbeutbelt
variator mounted on a test bench. Series of mesasuoiréhe
wrap radii and of the torque and the speed on thénd and
driven shafts were taken at equally spaced timtams and
collected to be worked out. The axial thrust ondhe and the
other pulley was measured in an indirect way, ugirginstant
wrap radii and the knowledge of the operative ctiaréstics of
the actuators. The correspondence of the axiabtheuch as
calculable by the theory and as given by the erpats, turns
out to be acceptable, which may be retained adidatian of
the approximate model.
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