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ABSTRACT 
 
The viscoelastic response of rubber V-belts is treated by a three-parameter constitutive model, where a 

spring is added in parallel to the Maxwell element. The viscoelasticity is considered in both the 

longitudinal and transverse deformation. In particular, the study aims at improving the wear resistance 

and the durability of the belt taking advantage of the slip decrease along the pulley due to the viscous 

retard in the deformation. An extensive experimentation has been carried out on some commercial 

belts, detecting the long-time viscoelastic properties and permitting a rough evaluation of the 

constitutive parameters to be used in a drive. The mathematical model for the viscous belt drive is 

solved numerically by Runge-Kutta routines and square error minimisation techniques through a 

steepest descent procedure. This permits quantifying the belt slip reduction, which is negligible for 

actual belts, but could be significantly enhanced by a proper selection of the belt materials.  

 

 

1. INTRODUCTION 

 

A rubber belt must be considered as a composite mechanical component, where the internal cord is 

subject to the longitudinal tension and the rubber body transmits the torque to the pulley walls. 

Interesting results can be obtained by modifying the viscoelastic properties of the belt materials. For 

example, an increase of the internal cord viscoelasticity might be advantageous for the wear resistance, 

because the belt slip would be reduced [1, 2]. 

The stress-strain behaviour of polymers can be modelled by combinations of Kelvin-Voigt 

elements (spring and dashpot in parallel) and Maxwell elements (spring and dashpot in series). The 

greater is the number of elements, the finer is the accuracy. The application of the three-parameter 

model (Maxwell element plus a shunt spring) to the main directions of the belt yields the following 

constitutive relationships [3]: 



 

( )////////// ετετ CR STT +=+  (1.1) 

( )⊥⊥⊥⊥⊥ +=+ ετεστσ CcRc E  (1.2) 

 

where the dots mean derivatives with respect to the time, the subscripts (.)// and (.)⊥ refer to the 

directions parallel and normal to the belt axis, T is the tension force, σc is the transverse compression 

stress, ε// and ε⊥ are the longitudinal elongation and the transverse compression strain. Equations (1.1) 

and (1.2) contain the constitutive parameters of the belt: S// and E⊥ give the longitudinal stiffness of the 

whole belt and the rubber elastic modulus at the elastic equilibrium, τR// and τR⊥ are viscous relaxation 

times, τC// and τC⊥ are viscous creep times, dependent on the temperature and on the duration of the 

phenomenon to be considered. Power belt drives imply deformation times of the order 10-2 s, while the 

static loading on a tension testing machine is much slower (Fig. 1). Very different values of the 

viscous retardation times are to be expected for the two cases. 

 

 

2. EXPERIMENTS 

 

Several experimental tests were carried out to detect the belt properties. Some commercial V-belts 

with similar characteristics were wound on two cast-iron pulleys and loaded by a tension-testing 

machine. Other tests were carried out overturning and winding the V-belts on two nylon band pulleys 

for a flat belt simulation. The pulley centre distance was increased in all the tests at the constant speed 

of 2.5 mm/min and then decreased. A remarkable hysteresis effect was observed due to the pulley 
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Figure 1. Load-relaxation test on a piece of belt 
(cogged V-belt, wedge angle = 14°, width = 15 mm, thickness = 4 mm + cogs) 



friction. Moreover, V-belts gave rise to much higher displacements than flat belts owing to the 

wedging into the groove, equivalent to a compliance increase. 

The friction coefficient f = tanϕ was calculated separately by dynamometric tests and the following 

results were obtained: f ≅ 0.3 (pulley wall - belt side), f ≅ 0.12 (nylon pulley - belt back). 

The theoretical analysis of the load tests is reported in Refs. [2, 4], giving the interpretation of the 

experimental plots. The length increase s − s0 of a piece of belt starting from the middle plane of 

symmetry through the pulley axes is calculated in dependence on the radial penetration on the one 

hand, on the elongation ε// on the other hand and the two expression are equated. Such a "mass 

conservation" condition is associated with the equilibrium equations, normal and parallel to the belt, 

completing the analytical definition of the problem. 

Significant quantities appear in this analysis and will be also used in the following. The stiffness 

parameter k = 2 tanα S⊥ / S// compares the transverse and longitudinal rigidities of the belt [5]. The 

transverse bending ratio B = εw / ε//  > 1 accounts for the radial deflection of the belt cross-section, 

which involves a decrease of the longitudinal elongation from the sides toward the mid-plane and then 

a lower value of the mean elongation ε// with respect to the wall value εw [6]. The sliding angle γ  is 

formed by the resultant friction force in the plane of rotation and the radius, while the angle β = arctan 

[f tanγ / (f ± sinα αγ 22 tantan1 ++ )] = β (tanγ) is formed by the resultant wall force, where the 

double sign refers to cosγ > 0 (+) or cosγ < 0 (−). 

A third order differential system has to be solved for the three unknowns ε//, x and γ in dependence 

on the angular coordinate θ. Assuming for simplicity the "isotropic" hypothesis of equal retardation 

times in the longitudinal and transverse directions, i. e. τR// = τR⊥ and τC// =τC⊥, one gets uncoupling 

between the space and time domains and may assume distributions of the separable variable type for 

the unknowns. Moreover, the sliding angle γ is found to depend only on θ, i. e. the belt elements 

penetrate along logarithmic spirals. 

The solution can be obtained in closed form and, adjusting the physical parameters of the belt by 

tentative in order to get a good fit with the experimental diagrams, comparing the results for V- and 

flat belts, the following numbers were roughly estimated: τR// ≅ 27 s, τC// ≅ 40 s, k ≅ 0.15. The other 

belt characteristics were: α = 14°, B ≅ 2.5. 

 

 

3. TWO-DIMENSIONAL ANALYSIS OF V-BELT DRIVES  

 

3.1. Scheme of a viscous V-belt drive 



Let us assume a V-belt drive in steady operation and consider the material response from the Eulerian 

point of view. Along the winding arc over the pulley, it is more convenient to use the unit angle axial 

force Z and the dimensionless radial penetration x = −∆r/r0 in place of σc and ε⊥, where r is the radius 

and the subscript (.)0 refers to zero load. However, the variable x is proportional to ε⊥: x =ε⊥ H/r0, 

where H is the groove depth. 

Introducing the transverse stiffness of the belt S⊥ = hE⊥r0
2 / H, where h is the equivalent belt 

thickness, and the dimensionless forces t = T / S// and z = Z / S⊥, one may change the constitutive 

equations, Eqs. (1.1) and (1.2), into the following form: 

 

γχ
εωτε

γχ
ωτ

tantan1tantan1
////

//
//

−
′

+=
−

′
+ CR tt                                         (along the arc of contact) (3.1) 

t
ds

dv C =+ //
////

ετε                                                                          (along the free span) (3.2) 

γχ
ωτχ

γχ
ωτχ

tantan11
cos

tantan11
cos

−
′

+=
′







−−
+






−
⊥⊥ xx

x
z

x
z CR             (along the arc of contact) (3.3) 

0=+ ⊥
⊥⊥ ds

dv C
ετε                                                                           (along the free span) (3.4) 

 

where primes indicate derivatives with respect to the angular coordinate θ along the arc of contact, ω 

and v are the angular velocity of the pulley and the belt velocity and χ is the penetration angle, formed 

by the belt trajectory and the circumferential direction. The factor cosχ / (1 − x) is justified in Eq. (3.3) 

by the relationship ds = r dθ / cosχ = r0 (1 − x) dθ /cosχ between the length ds of a belt element and 

the variation dθ. The denominator 1−tanχ tanγ appearing in Eqs. (3.1) and (3.3) can be easily 

understood considering Eq. (3.8) below. 

The constancy of the belt tension and the vanishing of the transverse compression stress along the 

free span justify equations (3.2) and (3.4), because no external force is applied there, but the creep is 

still progressing. 

The approximate approach of Refs. [1, 2] applies quite well to the mechanics of viscous V-belts, 

but accounting for the two-dimensional viscoelasticity. The belt path is divided in several parts like in 

Fig. 2 and the belt-pulley interaction is studied according with usual models [5, 7]. Each region is 

solved separately starting from its own initial point and then the solutions are connected to each other, 

fulfilling the variable continuity and obtaining a piece-wise global solution. 

Considering an elastic belt, the belt-pulley coupling presents three degrees of freedom: the 

extension of the wrap arc and the forces on the entrance and exit side. This agrees with three 



constraints to be imposed, pre-forcing, torque and winding width. When dealing with a viscoelastic 

belt, we have two extra variables (t ≠ ε//, z ≠ x (1 − x) / cosχ) and two extra differential equations (the 

constitutive equations above), that is five degrees of freedom in total, and must then impose also the 

circular continuity of the variables along the closed belt path. 

 

3.2. Main sliding arc 

A fifth order differential system and a finite equation are to be written, in the six variables t, ε//, z, x, χ 

and γ, i. e. Eqs. (3.1), (3.3) and: 
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where the subscript (.)O indicates a reference point O somewhere along the belt path. 

The solution depends on six constants for each pulley, ε//O, xO, χO, γO, zO and tO, in accordance with 

the number of degrees of freedom above (as the position of point O is arbitrary, the arc of contact Θ 

splits in two parts, Θupstream and Θdownstream, involving thus a sixth "degree of freedom"). 
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Figure 2. Scheme of the various regions along the belt path 
Subscripts: (…)R = driver pulley, (…)N = driven pulley, (…)T = tight span, (…)L = loose span 

SA = seating region, AO = adhesion-like region, OU = main sliding region, UF = unseating region 



Neglecting small terms, the previous equations, Eqs. (3.1), (3.3) and (3.5) to (3.8), can be abridged 

to the form: 

 

t′ = t tanβ (3.9) 
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x′ tanγ = x − xO + B (ε// − ε//O) + sO                               where sO = x′O tanγO (3.11) 

t + ωτR// t′ = ε// + ωτC//ε′// (3.12) 

z + ωτR⊥ z′ = x + ωτC⊥x′ (3.13) 

 

It is interesting that the belt inertia can be considered as well in the present analysis by simply 

giving to t and ε// the meaning of dynamic force and elongation, t − qv2/S// and ε// − qv2/S//, where qv2 is 

the momentum flux. 

Equation (3.10) can be solved for tanγ 
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where k1 = k tan (α + ϕ) / tanα, k2 = k tan (α − ϕ) / tanα and the double sign refers to the driven (+) 

and driver pulley (−) respectively [5]. 

Then, since t tanβ = (t − kz) cos2α tanγ by Eq. (3.10), Eqs. (3.9) to (3.13) contract to a fourth order 

differential system for the unknowns t, z, x and ε: 
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3.3. Adhesion-like region. Free span. Reference point O 

In accordance with recent theoretical findings [8] and with numerical results from the previous full 

differential system, the adhesion-like concept has to be introduced in the analysis in place of the idle 

arc. The belt tension does not vary appreciably along the adhesion-like region and the creep proceeds 

from the straight span through the seating region inside the arc of contact. 

Since the belt tension is nearly constant also along the boundary regions and moreover, it is 

necessarily constant along the free span due to the absence of external forces on the belt surface, a 

unique solution is valid along the whole tract UN,R OR,N (Fig. 2): 

 

t =  constant = tT/L (3.19) 

ε// = tT,L + (ε//U − tT,L) exp[(sU  − s ) / vτC//] (3.20) 

 

The transverse variables x and z will be obtained in the adhesion-like region by prolonging the 

seating solutions, which will be derived in the following subsection. As regards the free span, Eq. (3.4) 

gives 

 

z = 0 (3.21) 

ε⊥ = ε⊥F exp[(sF − s) / vτC⊥]           ε⊥F = xF 
H
r F0           ε⊥S = ε⊥F exp(− lfree span / vτC⊥) = xS H

r S0  (3.22) 

 

Notice that z = 0 but x ≠ 0 at points F and S, as the viscoelastic strain is not in phase with the stress. 

The diagrams of the two quantities t and ε// must necessarily intersect twice along the belt path and 

in particular, they do it inside the sliding arcs of the driver and driven pulley. In fact, the variable 

periodicity implies the vanishing of the integral ( )∫ − vdsdsdtdsd RC ////// τετ , which is equal in turn 

to ( )∫ − dst //ε  and could not vanish for t ≠ ε// everywhere. Since no intersection is possible where t is 

constant (or nearly constant) in contrast with the constitutive equations, the two points of intersection 

lie in the sliding arcs. As the experiments indicate that τC// > τR//, the slope of the ε// curve is lower than 



t at these intersections and thus, the starting value of ε// in the sliding region is a little lower than t on 

the driver pulley and a little higher on the driven pulley. 

Suppose to fix the reference point O, i. e. the initial point of the main sliding arc, at that particular 

position where ε// becomes stationary, i. e. maximum in the driver pulley and minimum in the driven 

pulley, before starting its rapid variation. The numerical results indicate that this condition 

corresponds to x″ ≅ 0 roughly for the driven pulley and to x′ ≅ 0 for the driver pulley. Moreover, the 

variables z and x are nearly equal there. 

Therefore, putting ε//′ = 0, Equation (3.17) gives zO in dependence on tO and ε//O. Between the two 

roots of this quadratic equation, the one closer to the value t / k1 is to be chosen (nearly stationary t). 

Then, it is possible to calculate sON for the driven pulley by differentiating Eq. (3.16) with respect to θ 

and putting x″ON = 0, while sOR is simply equated to zero for the driver pulley. 

 

3.4. Seating and unseating 

Inside the two short regions at the entrance and the exit of the wrap arc, the penetration gradient 

becomes relatively large. Equation (3.6) shows that χ′ = −1 at the ends of the wrap arc, where z = 0, 

and thus the gradient of χ is not negligible inside the boundary regions, differently from the main 

sliding arc. Furthermore, Eq. (3.8) shows that tanγ becomes small in these regions, because of the 

increase of χ. In practice, we are in front of a problem of the boundary layer type and a different 

approximate formulation must be used with respect to Section 3.2 [6]. 

Assuming γ ≅ 0° in the seating region (where the belt penetrates) and γ ≅ 180° in the unseating 

region (where the belt emerges), the tension t is nearly constant there (tanβ ≅ 0). Thus, considering the 

new order of magnitude of the variables, Equations (3.6) and (3.7) reduce to 

 

x″ − 
t
zκ  = − 1            where κ = k1 in the seating region and κ = k2 in the unseating region (3.23) 

 

The viscoelastic equation still holds in the form (3.13). 

Multiplying Eq. (3.13) by κ / t, summing Eq. (3.23) and observing that κ z′ / t = x′′′ by Eq. (3.23), 

the following third order differential equation is obtained for the boundary regions: 
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where the unitary axial force is given by z = (1 + x″ ) t / κ. 

Five conditions are imposed: zero axial force at the outer end and matching of the radial 

penetration, of the axial force and of their gradients with the inner solution at the inner end. 

Nevertheless, they are in practice four, because one is redundant due to Eq. (3.13). Four are also the 

constants to be determined, the three integration constants of Eq. (3.24) and the unknown angular 

width of the boundary region. 

Once the solution is obtained, the outer end radial penetration can be calculated. As was previously 

said, such a non-zero value must not surprise, since the deformation does not vanish simultaneously 

with the force for a viscoelastic material. The transverse deformation goes on creeping along the free 

span, according to Eq. (3.22), and matching with the downstream outer value of the other pulley, at the 

end of the straight strand. 

Using realistic values for the constitutive parameters of the belt, the three characteristic roots ρi of 

the cubic equation associated with Eq. (3.24) are generally real for the seating region and in particular, 

one is positive (say ρ1) and the other two are negative (ρ2 and ρ3). On the contrary, a pair of complex 

roots is found in the unseating region, unless the friction coefficient f is very small, in which case all 

the roots are real. 

Indicating with δ the angular distance from the outer end (δ = θ − θin or θ − θout for the seating or 

unseating region), the solution can be written in the form: 

 

x = 
κ
t [1 + ( )∑

3

1
exp δρ iic ]                z = 

κ
t {1 + 

κ
t  [ ( )∑

3

1

2 exp δρρ iiic ]} (3.25) 

 

Imposing the boundary conditions, four linear algebraic equations arise, in the three unknown 

constants ci. The fourth unknown δinner, angular width of the boundary region, appears in the 

exponential factors and can be found by imposing the linear inter-dependence of the system equations, 

i. e. equal rank (three) of the system matrix and of the augmented matrix. This transcendental 

condition can be solved by iterative procedures. 

Since the idle-like condition, z′inner ≅ 0, zinner ≅ t/κ = t/k1, x′inner ≅ 0, xinner ≅ t/κ = t/k1, can be applied 

at the inner end of the seating arc, the coefficient c1 must be equated to zero in Eqs. (3.25). This 

involves that the angular extent of the seating region is somewhat larger than the unseating one, 

similarly to the elastic case [6, 8]. At the exit side on the contrary, the connection between the main 

sliding and unseating arcs takes place with approximately constant penetration and tension, but with a 

very sharp change of the sliding angle, as is clearly visible by the numerical results from the full 

system. 



Observe also that, differentiating Eqs. (3.25) for δ = 0, the entrance and exit angles of the belt can 

be obtained and the torque can be calculated in dependence on these angles, on the local radii (≠ r0) 

and on the belt forces in the tight and slack sides. This is useful for the evaluation of the efficiency 

losses of a thin belt due to the boundary friction. 

Other effects influence the efficiency of a V-belt drive, e. g. the angular speed slippage because of 

the different elongation and penetration along the adhesion-like regions on the driver and driven 

pulleys, the bending hysteresis loss due to the cyclic seating and unseating of the belt on the pulley, 

the losses at the pulley bearings, or because of the air drag during the rotation, etc. 

 

 

4. NUMERICAL APPROACH 

 

The mathematical problem described so far is substantially non-linear and moreover, is defined over a 

fragmentary domain with unknown internal boundaries among the various parts. Fixing the geometry 

of the drive, the physical characteristics of the belt and the tension in the tight and slack sides, three 

quantities are to be determined for each pulley: the extent of the main sliding arc, the extent of the 

unseating arc and the starting elongation of the main sliding region. Four of these unknowns will be 

searched numerically by a square error minimisation process applied to the discontinuities among the 

various parts of the piece-wise solution, while the widths of the unseating regions will be simply 

updated at each iteration using the latest values of xinner, x′inner, zinner and z′inner for the calculation of the 

solutions (3.25). As regards on the contrary the seating solutions, they will match asymptotically and 

automatically to the adhesion-like solutions during the numerical calculation. 

For each pulley in practice, some starting values are imposed to the widths of the sliding and 

unseating arc and to the initial sliding elongation, and zO, xO and sO are calculated as was described in 

the last paragraph of Section 3.3. Then, Eqs. (3.15) to (3.18) are solved by a fourth order Runge-Kutta 

routine as far as the end of the sliding arc and Eqs. (3.19) to (3.22) are used to prolong the solution to 

the end of the adhesion-like region of the other pulley downstream. At this point, the tension and 

elongation are compared with the starting values used for the other pulley and the sum of the square 

errors is used as a criterion function to be minimised. 

The minimisation process follows the steepest descent technique, where the gradient of the 

criterion function is calculated numerically by changing one variable at a time. Then, the search moves 

"downhill" along the gradient direction making use of a dichotomous procedure, i. e. by halving the 

step size successively until a minimum of the criterion is achieved. At this local minimum, a new 

gradient vector is computed and then the search goes on in the same way as far as the final 

convergence is attained (criterion function < 10-6) [9]. 



In order to avoid numerical instability, the minimisation is carried out only for the two angular 

widths of the sliding arcs during a first phase of the calculation and the starting elongation is equated 

to the tension variable tO. This implies the vanishing of t′O, γO and sO by Eqs. (3.17), (3.15), (3.14) and 

(3.11) and involves the tension-compression relationship tO = k1zO. The penetration gradient x′O 

vanishes as well and thus, point O is recognised as an orthogonal point in the sense of Lutz [10]. 

Proceeding as in [5] but taking into consideration also the viscous relationships, the trajectory 

directions at such a singular point in the four-dimensional space of the sliding solutions are given by 
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where the symbol u± indicates the two roots of the quadratic equation 
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and the double sign refers to the driven (+) and driven pulley (−) respectively. 

Point O is a saddle-like singularity and the two separatrices springing from O are the images of the 

driven (+) and driver solution (−). It is worthy of mention that the Runge-Kutta integration uses the 

linear coordinate w along the solution trajectory as the independent variable similarly to [5], putting 

dt/dw = 1 / ( ) ( ) ( )22
//

21 dtdzdtddtdx +++ ε , dx/dw = (dx/dt)(dt/dw), etc., and computing the 

derivatives with respect to t by division of Eqs. (3.16), (3.17) and (3.18) by Eq. (3.15), or else by 

means of Eqs. (4.1) and (4.2) at the orthogonal point. 

The angular coordinate θ is then obtained by integration of Eq. (3.15), suitably modified to avoid 

the improper integration: 
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In this manner the function to be integrated does not diverge for t → tO, but tends to zero. 



After reaching a sufficient convergence in the first phase of the minimisation process (10-4), the 

starting elongation is varied as well according to the method described before. 

Some constraints are imposed to the progressing solution. The width of each region is continuously 

controlled so that it does not become negative: if this occurs, the width is equated to zero. The largest 

elongation must be lower than the largest dimensionless tension t and the lowest elongation must be 

larger than the lowest value of t: if this condition is violated, ε// is equated to t. 

 

 

5. RESULTS 

 

Figure 3 a shows the results for a drive where typical values of the viscous retardation times were 

imposed to the cord and rubber materials [11]. The influence of the belt viscoelasticity is insignificant 

in practice, as can be deduced by the nearly coincident diagrams of the forces and deformations. 

On the contrary, Fig. 3 b shows a hypothetical case where the retardation times were "artificially" 

increased somehow. The increase of the viscoelastic resistance in the longitudinal direction, i. e. in the 

cord, gives rise to remarkable differences, particularly in the main sliding region. Since the wall 

elongation εw = Bε// gives a measure of the belt velocity and is nearly equal to the pulley peripheral 

velocity in the adhesion-like region, a lower difference between ε//adhesion-like and ε//sliding, like in Fig. 3 b, 

indicates a reduction of the sliding velocity, which is to be considered as an advantage as regards the 

wear resistance of the belt. On the contrary, this result is scarcely useful as regards the efficiency, 

because it is somehow counterbalanced by the hysteresis losses during the load changes in the belt. 

The increase of the longitudinal viscous properties of the belt can be obtained by a suitable choice 

of the cord material. As a pure example, some InSn alloys used for the manufacture of composite 

panels exhibit very large values of both the elastic modulus and the loss factor [11] and might be 

conveniently used to reinforce the belt and reduce the slip. Maybe, other important aspects should be 

taken into consideration, such as the production economy or the operative reliability, addressing 

towards other types of materials, but the present study just wants to point out the influence of 

viscoelasticity on the belt behaviour and the possible achievable benefits. 

 

 

6. CONCLUSION 

 

A thorough theoretical insight into the mechanics of viscoelastic V-belt drives is presented and some 

benefits achievable for what concerns the wear resistance are pointed out. The belt viscous response is 

also detected by quasi-static experiments. 



It is known that the viscous resistance of polymers can be modified to some degree, within certain 

limits, by a suitable manufacturing process. This opens interesting views in the technology of rubber 

belts and in their application fields. 
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Figure 3. Longitudinal and transverse force and deformation 
ξ = x r0 / 0r = ε⊥H/ 0r , ζ = z r0 / 0r , 0r = (belt half-length − centre-distance) / π 

(a): ωτR// = .04, ωτC// = .06, ωτR⊥ = .02, ωτC⊥ = .03. (b): ωτR// = .2, ωτC// = .4, ωτR⊥ = .1, ωτC⊥ = .2 
Other data: f = .3, α = 14°, k = .15, B = 2.5, TT / TL = 2.5, ωdriven / ωdriver = 1 
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