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ABSTRACT 
 

The present analysis addresses rubber V-belt variators. 
Experimental results on the elasto-reological properties of 

several belts are presented and the belt wedging into the pulley 
groove under static loading is analyzed. 

The convenience of innovative tensioning strategies is 
considered, e. g. attaining limit tension and full slip 
simultaneously, and an approximate formulation for the mechanics 
of V-belts is proposed. 

Possible split-way arrangements are analyzed, aiming at the 
optimization of the variator class. 

 
INTRODUCTION 
 

Relevant problems arise in the area of V-belt CVT’s due to 
the variable tension request in dependence on the operative 
conditions (torque and speed ratio). Pre-forcing is usually realized 
by hydraulic thrust on the pulleys with remarkable power losses, 
especially at partial load [1]. 

Passive tensioning systems, e. g. spring based, could in part 
overcome this drawback. Moreover, it would be convenient to 
calibrate the axial thrust so as to attain maximum admissible 
tension and slip limit simultaneously in the whole operative range, 
for the best variator exploitation [2-4]. To this end, it is important 
to gain precise information on the physical properties of the belts 
and develop a simple and reliable formulation for the belt variator 
mechanics in place of more complex though well established 
theories [5-7]. 

The idea of using the variator into split-way drives has 
stimulated the researchers in the last decade. The present concepts 
can be applied to a double way drive for the optimization of the 
power class of the variator. 

 
EXPERIMENTS 
 

Retarded elasticity phenomena appear during the static 
loading of rubber belts. Experimental tests on a traction machine 
permit a rough evaluation of the belt constitutive parameters. 

The Maxwell element (spring and dashpot in series) plus a 
shunt spring gives an approximate model for the response of a belt 
element. The constitutive relationship between the belt tension T 
and the longitudinal elongation ε becomes 
 

( )ετετ ε+=+ STT T  (1) 

 

where dots indicate derivatives with respect to time, S is the 
equilibrium stiffness, Tτ  and ετ  are viscous retardation times, 
dependent on the temperature and the deformation rate. It is 
interesting that a large viscous resistance inside the internal chord 
may retard the longitudinal deformation and reduce the sliding 
speed on the pulley. The possible advantages are analyzed in 
another paper [8]. 

Figure 1 shows a scheme of the experimental tests. Several 
commercial V-belts were wound on two cast-iron pulleys and 
loaded by a traction machine. Other tests were carried out by 
overturning and winding the V-belts on nylon band pulleys for a 
flat belt simulation. The center distance was increased in all the 
tests at the constant speed of 2.5 mm/min. The friction coefficient 
was calculated separately by dynamometric tests. 

As an example, Fig. 2 a shows the experimental 
load/displacement diagram for the wedged and overturned set-up. 
The hysteresis effect is due to the belt internal viscosity and to the 
pulley friction. V-belts give rise to much higher displacements 
than flat belts owing to the elastic wedging into the groove, 
equivalent to a compliance increase. 

Relaxation tests were also carried out to calculate the 
retardation times of the system (see Fig. 2 b). The asymptotic 
equilibrium tension ∞T  = Sε was measured after several minutes 
of relaxation. 

 
Fig. 1 Static Loading  

OU 

OL 

γ 

s0 

s 

θ 

α 

wedged   overturned 
d 



STATIC LOADING ANALYSIS 
 
Theory 

The present theory applies to the main sliding arc on the 
pulley. The short boundary arcs will be ignored and replaced by 
penetration discontinuities, as usual in V-belt mechanics [5-7]. 

The equilibrium and penetration equations of a V-belt 
element were derived in a previous paper [6]. Here, their abridged 
form is reported, neglecting smaller terms, 

 
βtanTT =′                       (equilibrium) 

 
(2) 

γα
β
tancos

tan1 2−
= kx

S
T          (penetration) (3) 

 
where primes indicate derivatives with respect to the angular 
coordinate θ, x = − ∆r / 0r  is the dimensionless penetration, the 
subscript … 0  refers to zero load, α is the groove half-angle and k 
is a the radial stiffness parameter of the belt [6]. Moreover, γ  (= 
sliding angle: see Fig. 1) and β (= arctan { f sinγ / [ f cosγ + sinα 

γα 22 costan1+ ] }) are the angles formed with the radius in the 
plane of rotation, by the resultant friction force and the total wall 
force respectively. 

V-belts with large width-to-thickness ratios deflect radially 
in the transverse planes and the theory of elasticity indicates a 
reduction of the local belt elongation: ε(z) ≅ wε − u (z) /r, where z 
is the axial co-ordinate, wε  the wall elongation, r the radius and u 
the centreward displacement. 

For cogged V-belts, the cogs can be considered as transverse 
beams connected to each other by the chord layer. Each cog is 
subject to a distributed load due to ε(z), yielding the deflection 
equation wUZU εµµ 4444 44 =+∂∂ , where Z=2z/b, U = u/r and 
µ is a compliance parameter, to be determined by experiments. 
Imposing the boundary conditions U = ∂U / ∂Z = 0 for Z = ± 1, 
integrating and averaging across the section, one gets ε = 
= ( ) ( )[ ]µµµµµµµµµε sincosshchcosshsinch 2222 ++w = wε /B, 
where B is constant in practice along the belt [9]. 

The belt will be here considered as one-dimensional and the 
symbol ε = B wε will indicate the mean longitudinal elongation 
across the section. 

When loading a V-belt as in Fig. 1, the two belt elements on 
the plane of symmetry ( UO  and LO ) penetrate radially into the 
groove, the others penetrate and slide towards the free spans and 
the ends of the wrapped arc come out from the contact zone. 

Let us indicate with s the length of a belt arc starting from 
the central plane and 0s the zero load length (Fig. 1). Minding that 
all quantities are measured at the pulley walls and neglecting 
smaller terms, we write 
 

s − 0s = ( ) ∫∫∫ ==−− 00
00000000 1 θθθ θεθεθθ dBrdrrdxr w  

i. e.        ( )∫ +=− 0
00
θ θεθθ dxB  

(4 a, b) 

 
Consider a perfectly elastic belt ( Tτ  = ετ = 0, ε = T / S), 

impose the initial condition ε = 0 and assume a separable variable 
distribution, ε(t,θ) = ( )tfsε  Y (θ), where the subscript fs... refers to 
the free span and Y (π /2) = 1. The belt equilibrium (2) involves 
the independence of β (and γ) on the time t, which means that the 
belt elements penetrate along logarithmic spirals and the ratio ε / x 
= w is independent of t due to Eq. (3), i. e. x = ( )tfsε  X (θ), where 
X (θ) = Y (θ) / w (θ). 

The center distance increase while loading is given by 
 

( ) ( ) ( )[ ]∫ ++=− 2
0000 1,2 π θθθεε dwBtrtddd fs  (5) 

 
and in the hypothesis of a constant deformation rate v, we 

obtain ( )tfsε  = vt / b, where b = ( ) ( )[ ]∫ ++ 2
000 12 π θθθ dwBYrd . 

Differentiating Eq. (4 b) with respect to time, observing that 

r dθ = r tanγ dx, whence γtanx  ( )∫ += 0
0
θ θε dxB , eliminating 

the time dependent factors and differentiating with respect to 0θ , 
we get 

 
( ) 0tan θγ dXd = (X tanγ)′  = BY + X (6) 

  
Replacing x with X and T with YS into Eqs. (2) and (3), we 

have thus three equations in total in the space domain, Eqs. (2), (3) 
and (6), in the three unknowns X, Y and γ. Uniqueness 
considerations permit to accept the following results as the correct 
solution of the problem and justify the separable variable 
assumption. 

It is easy to verify that the present separable variable 
solution applies to viscoelastic belts as well if Tτ  = ετ , which is 
a realistic condition, since creep and relaxation times of polymers 
are not very different in most cases. 

 
Solutions 

Solve Eq. (3) for tanγ, choosing tanγ  > 0 (Fig. 1). Then 
 

( )( )
( )kw

kwwkC
−

−−
=

α
γ 2

21

cos
tan  (7) 

 
where C = ( ) ( ) ϕϕαϕα coscoscos −+ , 1k = k tan (α + ϕ)/tanα, 

2k = k tan (α − ϕ)/tanα, ϕ = arctanf. 
Eliminate γ through Eqs. (2) and (3): 
 

Fig. 2: (a) Hysteresis loop, (b) Relaxation 
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Y′ = ( )( )XkYYXkC 21 −−  (8) 

 
Since (tanγ)′ = w′ d (tanγ)/dw, X′ = w′ dX/dw and w′ = Y′/(X 

+ w dX/dw), Equations (6), (7) and (8) lead to a differential 
equation for the variable X (w): 
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(9) 

 
where ( ) 221 kkkm += . 

Indicating with 0c  a constant of integration, the solution is 
 
X = 0c ( ) ( ) ( ) ( ) 321

321
aaa wwwwwwkw −−−−  (10) 

 
where the iw are poles of Eq. (9), i. e. roots of the cubic equation 

( ) ( ) ( )αα 22222223 tan123tan2 fkkwfwfBkBw −++−−−+  
= 0, (this same equation gives the asymptotic directions of the 
trajectory portrait [6]). The exponents can be calculated by 

=ia ( ) ( )[ ]
iwwi dwwdDwN = , where N and D are the numerator 

and the denominator of the right-hand side of Eq. (9).  
One of the three roots is real and is always included between 

k and 1k ; the other two may become complex when 2k < −1 (large 
k and f, small α), though this is not frequent for common V-belts. 
In this eventuality, the partial fraction expansion of Eq. (9) leads 
to more complex solutions, which are here omitted for brevity. 

Putting dX/dw = (Y′/w′ − X) / w, Eqs. (8) and (9) give rise to 
a differential equation for the inverse function θ(w): 
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where the iw have the same meaning as above and the ib can be 
obtained similarly to the ia . 

The solution can be derived in closed form as sum I of the 
integrals iI  of the partial fractions. Putting u = w − iw , U = 
( )( )21 kwwk −− , ( )( )21 kwwkU iii −−= , we have 
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and then 
 

( ) ( )[ ]1kIwIC −=θ  (12) 
 
as w = 1k  for θ  = 0 by Eq. (3), because γ vanishes in the plane of 
symmetry. The case of a pair of complex conjugate roots is more 
cumbersome and is not reported here for brevity. 

Equations (10) and (12) provide a parametric representation 
of X (θ) and Y (θ) = w (θ) X (θ), where 0c must be so chosen that 
Y(π / 2) = 1. Then, the slope 2d fsT /d (d − 0d ) = 2S/b of the 
force/displacement diagram can be calculated in dependence of k, 
by integrating the function BY (θ) + X (θ). 

The flat belt arrangement implies B = 1, X = 0, Y (θ) = exp f 
(θ − π / 2) and gives b = ( )[ ] ffrd 2exp120 π−−+ . Thus, 
comparing V- and flat belt slopes and adjusting the radial stiffness 
k by tentative with the aim at the best fit with the experimental 
plots, the stiffness parameter k may be estimated. Figure 3 shows 
the diagrams γ (θ), X (θ) and Y (θ) for a typical case. 

 
CVT ANALYSIS  
 
V-Belt Mechanics 

The equilibrium and penetration equations, Eqs. (2) and (3), 
must be rewritten putting ε = (T − q 2v ) / S in place of T / S, 

where q 2v is the belt momentum flux and ε has now the meaning 
of "dynamic" elongation. A proper kinematic condition must 
replace the static deformation equation Eq. (6), accounting for the 
triangle of velocities and the mass conservation requirement [6] 

 
oo BBxxx εεγ −+−=′ tan  (13) 

 
By elimination of γ like in the previous section, a differential 

system for ε and x can be obtained 
 

ε′ = ( )( )xkxkC 21 −−± εε  
 

x′ = ( )( )
( )( )xkxkC

kxBBxx oo

21

2cos
−−

−−+−±
εε

εεεα  

(14) 
 
 

(15) 

 
where the double sign refers to the driven (+) and driver (−) pulley 
and the subscript … o refers to the "orthogonal point" at the 
beginning of the main sliding arc, where the belt velocity and the 
friction force are orthogonal, γ = 0 and oε / ox = 1k [6]. 

Equations (14) and (15) are singular at the orthogonal point, 
but can be solved by Runge-Kutta routines. Eliminating the 
independent variable by division of Eqs. (14) by (15), a trajectory 
portrait can be sketched on the tension/penetration plane (Fig. 4). 
The orthogonal point O is a singularity for the trajectory equation, 
whence the driven and driver trajectories spring out with slopes 

( ) ( ) ( ) BfBfkBfpo ααα tan5.1tan12tan5.1 22 −−++−±=  
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Fig. 3 Force and penetration diagrams for static loading 
(k = 0.15,  f = 0.3, α = 14°, B = 2.5) 



In practice, taking values from the present experimentation 
for f and k, the driver pulley trajectory denounces rather small 
penetration changes along the main sliding arc, while the driven 
pulley trajectory is similar to a straight-line with a certain slope p 
through the orthogonal point (Fig. 4). Moreover, the numerical 
solutions indicate a nearly linear increase of γ and β along the 
sliding arc of the driver pulleys. 

This suggests to put ( )θβεε o′=′ tan and x ≅ ox for the driver 
pulley, replace x − ox ≅ (ε − oε ) / p into Eq. (14) for the driven 
pulley and ignore Eq. (15). By the previous definition of β, we 
derive ( )αγβ tan+′=′ ffoo , where oγ ′  can be obtained 
differentiating twice Eq. (13) at the orthogonal point and minding 
that ooo px =′′′′ε due to l’Hôpital rule: oγ ′ = 0.5 (1 + B op ). 
Therefore, we get by integration 

 

( )[ ] o
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where Ω = ( )( ) pCkppk 21 −−  and we remark that k ∝ 2

0r  
and thus is different for the DN and DR pulleys and changes with 
the speed ratio. The slope p may be chosen as a suitable mean of 

the slope at the orthogonal point, oDNp , and the asymptotic slope 

1wp =∞  (see previous section). A very good fit can be obtained 
putting p = 0.6 oDNp + 0.4 ∞p , as shown in Fig. 5, where the 
Runge-Kutta plots of ε and x are traced by a continuous line and 
compared with the solutions (16) and (17). 

The penetration function x (θ) permits the calculation of the 
axial thrust zF , by integration of the unit angle axial force 

αtan2/kxSFz =′ . 
 

Limit Performance 
Suppose to load a variable speed drive close to the full slip 

limit and control the axial thrust so as to attain the highest 
admissible tension xT  on the tight span. Since self-locking usually 
prevents full slip on the driver pulley, this limit condition can be 
reached in practice only on the driven one. 

Then, indicating with Θ the arc of contact and using the 
previous model, we obtain the limit relationships for the 
transmissible power and the axial thrust: 
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Fig. 5 Closed form solutions (o +) for V-belt drives (data of Fig. 3) 

Fig 6: (a) Limit power, (b) Driven pulley axial thrust 
- Variator characteristics: center distance = 255 mm, mean radii 

= 39 mm, wedge angle = 14° 
- Belt: cogged type, unit length mass = 0.124 kg/m, transverse 

width = 15 mm, friction coefficient = 0.3, admissible tension = 
500 N 

- inn = 2000, 4000, …, 16000 rpm 

Fig. 4 Trajectory portrait (data of Fig. 3) 
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For example, the diagrams of Fig. (6 a, b) were drawn in 

dependence on the speed ratio vτ  for a commercial variator, for 
several input speeds. The particular driving speed 9281 rpm 
produces equal power at the ends of the range, and this level ( 0vP ) 
is used for scaling the power diagram, due to the opportunity of a 
conventional reference performance. The quasi-linear dependence 
of the axial thrust on the speed ratio indicates the feasibility of the 
limit operation by means if a simple loading spring on the driven 
pulley without any external control [4]. 

More accurate but complex relationships for the axial thrust 
could also be used [10]. 

 
SPLIT-WAY SCHEME 
 

As well known, the speed range of a CVT can be amplified 
by inserting the variator into a double- or multi-way arrangement, 
connecting the branches by one or more epicyclic trains (see [2, 
3], also for a survey on the literature). This practice may yield 
infinite or even negative "aperture" (ratio of the maximum and 
minimum speed ratio) but must be paid by an increase of the 
power demand to the variator, i. e. of its "class" (ratio of the multi-
way and single-way variator power). 
 
Speed-Power Gain Balance 

Define as "speed gain" of a complex CVT scheme the ratio 
between the logarithmic differentials of the speed ratios of the 
whole transmission and of the simple variator: (dτ /τ) / ( vvd ττ ). 
Besides, define as "power gain" the ratio between the total power 
and the variator power. The principle of virtual displacements 
permits to demonstrate that the product of such two gains must be 
equal to unity in no friction conditions. 

Whichever multi-way CVT is considered as in Fig. 7, 
suppose to take away the inside variator and leave the primary and 
secondary torque applied at the shaft stumps as external reaction 
couples. Assuming no-friction working, the virtual displacement 
principle requires the vanishing of the total work done by the 
input, output, primary and secondary torque for any virtual 
rotation of all shafts from an equilibrium configuration: 

 
( ) ( )

( ) ( )DNDNDNDRDRDR

outoutoutininin
MM

MM
δϑϑδϑϑ

δϑϑδϑϑ
+−+=

=+−+
 (21) 

 
where the iϑ = ti∆ω are real shaft rotations, such that inout ϑϑ = 
τ, vDRDN τϑϑ =  and that the total work of the four couples iM  
is zero, while the iδϑ  are arbitrary virtual variations allowed by 
the system constraints. 

Since =iiM ϑ  tPi∆ , τ + δτ = ( outϑ +δ outϑ ) / ( inϑ +δ inϑ ), 
i. e. δτ /τ = δ outϑ / outϑ −δ inϑ / inϑ  and vτ + δ vτ = ( DNϑ +δ DNϑ ) 
/ ( DRϑ + δ DRϑ ), i. e. δ vτ / vτ = δ DNϑ / DNϑ −δ DRϑ / DRϑ , then 

Equation (21) gives .varP vv τδτ = .totP  δτ /τ, which is exactly 
what we wanted to prove. 
 
Two-Epicyclic Train Scheme 

As an example, let us consider the symmetric double-way-
two-epicyclic-train scheme of Fig. 8 and suppose ideal no-friction 
working. The boxes indicate gears, where the power fluxes and 
speed ratios must be considered according to the arrow directions 
in the figure, e. g. 12 ωωτ =v , etc. 

The analysis can be carried out in the usual way by equating 
to zero the total entering power and the sum of the external 
couples for each epicyclic gear. 
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Here, the subscripts … m , … U  and … D  refer to the 

minimum external speed ratio of the whole transmission and to the 
upstream and downstream epicyclic train. Moreover, we have put 

12 DDDvmD KKγτσ = , 21 UUUvmU KKγτσ = , ξ = 
= ( ) ( )[ ]DmUDU KK γτγ ++ 1111 , where Uγ  and Dγ  are the torque 
ratios through the shafts 2 and 1, i. e. fixed functions of the basic 
speed ratios of the respective epicyclic trains, independently of τ. 

Indicating with A = mM ττ  and vmvMvA ττ= the 
"apertures" of the whole drive and of the variator, where the 
subscript … M  refers to the maximum external speed ratio, we get 

Uσ  = [A − vA + ξ ( vA − 1)] / [ vA  (1 − A)] and Dσ  = [A vA − 1 − 
A ( vA − 1) / ξ] / [ vA  (1 − A)]. Therefore, the behavior of a 
particular transmission is completely defined by a triad of 
numbers ξ, A and vA , independently of the specific values of the 
fixed ratios K or γ, which may thus be chosen in view of the 
simplest arrangements. For example, putting K = 1 is equivalent to 
the elimination of a gear, putting γ = 0 or ∞ is equivalent to the 
elimination of an epicyclic train, which must be associated with an 
additional condition K = 0 or ∞ that eliminates a branch. 

Fig. 8 Symmetric split way scheme 
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Once chosen ξ, A and vA , the ratio of the driving speed of 
the variator and the input speed is determined as a function of 

( ) ( )vmvUUUinv K ττσγωωτ ++= 11, 11 , so that, assuming 
constant engine speed, the limit operative curves of the variator 
can be traced on the characteristic map of Fig. 6 a, b. 

At full input power, it is vital that the power request (23) 
should be compatible with the power capacity of the variator, 
which condition identifies the variator class for given engine, once 
the drive scheme has been chosen. 

Of course, this compatibility cannot be fulfilled in the whole 
speed range in case of infinite or negative aperture, if one minds 
for example that the neutral configuration implies the divergence 
of the power ratio (23), at least for ideal no-loss working. Some 
limiting device should be then present in the layout in addition to 
the common engine throttle, in order to cut the engine feed, for 
example in the range between the reverse and the symmetrical 
forward speed (−1 < τ / mτ < 1). 

This limiting device could be conceived in such a way to 
deliver the maximum admissible power to the variator throughout 
the mentioned partial range around the neutral. Otherwise, it could 
be planned for providing constant output torque in that range. 
Here, the last condition is imposed. 

Furthermore, the variator should be optimized in the whole 
speed range by equating admissible and requested power in the 
most critical conditions. Comparing with the one-epicyclic train 
scheme, an important advantage of the two-epicyclic train choice 
is the possibility of imposing two critical conditions instead of 
one. Thus, a finer fit can be achieved, though at the cost of a 
greater complexity of the set-up. 

Indicating with 0vP  the reference variator power (e. g. the 
endpoint power for inn = 9281 rpm in Fig. 6), define the variator 
class in a split-way scheme as the ratio between .. totvar PP  (23) 
and 0vx PP  (18) in the most critical condition (where .varP  = xP ). 
For geometrically similar variators and same belt speed, the class 
is proportional to the square of the size by Eq. (18). 

Figure 9 shows the variator class in dependence on the total 
aperture A for vA = 3.375 or 1/3.375 and for several values of the 
"partial" aperture mMA 111 ωω= = (ξ − A) / [ vA (ξ − 1)], which is 
here chosen as the third free parameter in place of ξ. The 
minimum class can be obtained by enveloping the plots from 
below: this determines the quantities 1A and ξ. 

As can be seen, the class is nearly equal to A / vA  when A > 
0, but grows to much higher numbers when A < 0. This is a 
consequence of the power flux recirculation through the variator 
(see previous subsection). Nevertheless, the present procedure 

guarantees the lowest obtainable class rises among all possible 
schemes like Fig. 8. 

The use of two- or multi-mode transmissions, where the 
switch from one mode to another is done during synchronous 
running by suitable clutches, permits a substantial reduction of the 
variator class, but at the cost of more complex schemes. 
 
CONCLUSION 
 

Simple experimental tests permit the characterization of 
rubber V-belt variators as regards the tribological properties of the 
belt-pulley contact and the (visco-) elastic parameters concerning 
longitudinal elongation, radial bending and penetration of the belt. 
A suitable theory on the static loading of the belt-pulley system 
can be used for this type of analysis. 

Accurate closed form approximations to V-belt mechanics 
apply very well to the limit performance of variators, i. e. at full 
slip and maximum admissible tension. 

Such a limit behavior permits the best exploiting of the 
variator characteristics inside a split-way CVT, aiming at the 
lowest variator class for given driving engine. 
 
ACKNOWLEDGMENT 
 

The authors acknowledge the financial support of the Italian 
Ministry M.U.R.S.T. 

 
REFERENCES 
 
1. Bas Van Vuren, "Efficiency Improvement in CVT Systems", 

Proceedings of SITEV 90, Technical Forum, Torino, Italy, 
(1990). 

2. Alberto Beccari and Francesco Sorge, "Improved 
Performances of CV Transmissions for Passenger Cars", 
Proceedings of the 3rd ATA Intern. Conference Innovation 
and Reliability in Automotive Design and Testing, Firenze, 
Italy, (1992). 

3. Massimo Andolina and Alberto Beccari, "Continuous 
Variation Transmission in Automotive Application: 
Extension of the Working Range of Automotive Transmission 
to Start and Reverse Motion with Minimization of Variator 
Dimension", Proceedings of the JSAE Intern. Conference 
CVT ‘96, Yokohama, Japan, (1996). 

4. Alberto Beccari and Marco Cammalleri, "Implicit Regulation 
for Automotive Variators", Proceedings of Inst. of Mech. 
Engin., (to be published). 

5. Göran Gerbert, "Force and Slip Behaviour in V-Belt Drives", 
Acta Polytechnica Scandinavica, Mech. Eng. Series, Helsinki, 
Finland, (1972). 

6. Francesco Sorge, "A Qualitative-Quantitative Approach to V-
Belt Mechanics", ASME Journ. of Mech. Design, Vol. 118, 
(1996), 15-21. 

7. Göran Gerbert, "Traction Belt Mechanics", Chalmers, 
Göteborg, Sweden, (1999). 

8. Francesco Sorge and Marco Cammalleri, "Viscoelastic 
Response of Rubber Belts", Proceedings of the 15th Congress 
AIMETA, Taormina (ME), Italy, (2001). 

9. Francesco Sorge, "Limit Performances of V-Belt Drives", 
Proceedings of the Intern. Conference CVT ‘99, Eindhoven, 
The Netherlands, (1999). 

10. Francesco Sorge, "A Simple Model for the Axial Thrust in V-
Belt Drives", ASME Jour. of Mech. Design, Vol. 118, (1996), 
589-592. 

 
 

Fig. 9 Variator class map (data of Fig. 6), 1A = 0.5, 0.6, …, 2 
Thick line: optimization for constant power variator ( 0vP ) 
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