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Prove di carico su cinghie di trasmissione commerciali con corpo di gomma e corda interna in
materiale sintetico evidenziano fenomeni d'elasticità ritardata.
E’ noto che le proprietà meccaniche e reologiche dei polimeri dipendono dal processo di
preparazione e che è possibile aumentare o ridurre l'attrito interno entro larghi limiti in
dipendenza delle caratteristiche richieste. Per quanto riguarda le cinghie di trasmissione, non è
opportuno aumentare la viscosità propria del corpo di gomma, poiché così si esaltano le
perdite per isteresi nel ciclico cambiamento di curvatura durante le fasi d'avvolgimento e
svolgimento dalla puleggia. Può essere invece conveniente incrementare l’isteresi nella corda
interna, giacché il ritardo viscoso delle deformazioni elastiche longitudinali riduce la velocità
di strisciamento sulla puleggia, con conseguenti vantaggi riguardo all'usura della cinghia e, in
piccola parte, anche al rendimento.
Il presente approccio analizza il comportamento viscoelastico delle cinghie nelle trasmissioni
di potenza, formulandone l’equazione costitutiva in base ad un modello del tipo elemento
Maxwell con molla in parallelo ed individuando le differenze rispetto al modello elastico
convenzionale.
Si mostrano inoltre i risultati di prove di carico-scarico, "creep" e "relaxation" su alcune
cinghie, dando un'interpretazione teorica dei diagrammi sperimentali ottenuti.
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SOMMARIO
Si analizza il comportamento viscoelastico delle cinghie nelle trasmissioni di potenza,
formulandone l'equazione costitutiva in base ad un modello a tre parametri del tipo elemento
Maxwell con molla in parallelo. Si evidenziano gli effetti del ritardo viscoelastico della
deformazione longitudinale sullo scorrimento della trasmissione e quindi i possibili vantaggi
in termini d'usura e di rendimento. Si mostrano infine risultati sperimentali di prove di carico-
scarico, "creep" e "relaxation" su alcune cinghie di tipo commerciale.

ABSTRACT
The viscoelastic behavior of rubber belts is analyzed using a three-parameter constitutive
model based on the Maxwell element plus a shunt spring. The research aims at the decrease of
the belt slip on the pulley by a retard of the longitudinal elastic response, to the advantage of
the belt wear and the efficiency. Experimental results from load, unload, creep and relaxation
tests on several belts by a tension testing machine are also shown.

1. INTRODUCTION

Load tests on current rubber belts reinforced by internal synthetic chords give clear evidence
of retarded elasticity phenomena.

It is well known that the viscoelastic properties of polymers depend on the manufacturing
process and it is possible to increase or reduce the internal friction in dependence on the
requested working characteristics [1, 2, 3, 4].

As to traction belts, an increase of the body rubber viscosity is not convenient, due to the
bending hysteresis losses when unseating and seating on the pulley. On the contrary, an
increase of the internal chord hysteresis may yield some advantage, as the belt slip may be
reduced by the retarded longitudinal deformation.

The present analysis deals with the mechanics of viscoelastic belts assuming a three-
parameter constitutive model for the belt element and compares with the pure elastic
behavior.

Some experimental results from tensile tests on rubber V-belts show their viscoelastic
properties and permit a rough evaluation of the constitutive parameters.
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2. THREE-ELEMENT MODEL

Polymers can be classified as amorphous (crosslinked or unkrosslinked) and crystalline [1].
Common elastomers fall in the class of crosslinked amorphous polymers while the chord
material is generally crystalline. Crosslinking among neighboring molecular chains through
the so-called “entanglements” is produced during the manufacturing process and provides the
material with a large resistance to the deformation and to the deformation rate.

The viscoelastic behavior of polymers can be detected by creep and stress-relaxation tests.
Alternate loading tests give information about the short time phenomena. The deformation is
out of phase with the load and a complex elastic modulus can be defined through its two
components, storage modulus (real) and loss modulus (imaginary).

It is remarkable that the viscoelasticity of polymers is strongly dependent on the
deformation time and we should better define a continuous viscoelastic spectrum in the
frequency domain, instead of lumped viscous parameters. The viscoelastic behavior depends
also on the temperature in the field above the glass-transition temperature and a correlation
can be defined between frequency and temperature dependence [1, 2, 3, 4, 5].

The mechanical response of polymers can be approximately modeled by simple schemes as
the Kelvin-Voigt element (spring and dashpot in parallel) or the Maxwell element (spring and
dashpot in series). Otherwise, various combinations of Kelvin-Voigt and Maxwell elements
give more accurate results. The best fit is obtained by a large number of elements, infinite in
the limit, yielding the concept of continuous relaxation or creep spectrum [1, 2, 3].

Figure 1 shows a generalized Maxwell model and the simplified scheme of a belt element
that is being considered in the present analysis (Kelvin-Voigt-Maxwell three-parameter
element, with asymptotic trend to the rubbery elastic plateau). The constitutive relationship
between the belt tension T and the longitudinal elongation ε is

( )ετετ ε+=+ STT T (1)

where dots indicate derivatives with respect to time, S is the equilibrium stiffness of the belt,
τT and τε are viscous retardation times, dependent on the duration of the phenomenon. Power
belt drives imply deformation times of the order of 10-2 s, while static loading on a tension
testing machine takes place during several minutes. Very different values of τT and τε are to
be expected for the two cases.

3. EXPERIMENTS

Figure 2 a shows a schematic representation of the experimental tests. Several commercial V-
belts with similar characteristics were wound on two cast-iron pulleys and mounted on a
tension testing machine. Other tests were carried out by overturning and winding the V-belts
on nylon band pulleys for a flat belt simulation.

Fig. 1 - Generalized Maxwell model and three-parameter element
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The belts were cogged and presented the following characteristics: wedge angle α = 14°,
length ≅ 750 mm, transverse width ≅ 15 mm, thickness ≅ 4 mm (excluding the cogs), unit
length mass ≅ 0.125 kg/m, winding radii = 39 mm, center distance ≅ 250 mm. The center
distance was increased in all the tests at the constant speeds of 2.5 or 10 mm/min.

The friction coefficient was calculated by dynamometric tests. The values f ≅ 0.3 and f ≅
0.12 were derived for the V- and flat belt test respectively. Notice that actual flat belts exhibit
much higher values of f on steel pulleys (e. g.  f = 0.5).

As an example case, Fig. 2 b shows some experimental load/displacement diagrams for the
wedged and overturned arrangements. The hysteresis effect is due to the internal viscosity and
to the friction on the pulley walls. V-belts show much higher displacements at the same load
levels owing to the elastic wedging into the groove, equivalent to a compliance increase. The
slight decrease of the V-belt curve slope on increasing the load is due to the chord creep and
to the cross-section contraction.

Moreover, the initial slopes of the unloading diagrams are in practice equal in all the tests,
for both wedged and overturned arrangements. At the start of the unloading period in fact, the
sliding arc width on the pulley is zero and spreads all over the wrap arc afterwards. Thus, only
the free spans begin initially to relax and they are the same for both winding cases.

Relaxation tests were also carried out to calculate the retardation time τT of the system.
Figure 3 shows a typical stress/strain diagram, up to the belt rupture, and a relaxation plot.
The asymptotic equilibrium load T∞ = Sε  was measured after several minutes of relaxation.

4. LOADING AND UNLOADING ANALYSIS

While loading at a constant deformation rate as in Fig. 2, the elements of a flat belt in contact
with the pulley slide outwards from the plane of symmetry OUOL and the ends of the wrapped

Fig. 3 a, b - Experimental results for a test belt, (a): stress/strain diagram, (b): relaxation (σ = force/cross-section)

Fig. 2 a, b - Experimental tests, (a): loading scheme, (b): hysteresis cycle
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parts come out from the contact zone. The center distance increase is due to the elongation of
the wound parts and the free spans. We can write:

∫+=− 2
000 2 π θεε drddd fs

(2)

where d is the center distance and the subscripts …fs and …0 refer to the free span and to the
zero load condition respectively.

The results for the tests on the grooved pulleys are strongly affected by the belt
penetration: ( )∫ ++=− 2

000 2 π θεε dxBrddd fs , where x = − ∆r / r is the dimensionless

penetration and the factor B > 1 accounts for the transverse bending of the belt cross-section.
This case is dealt with in another paper [6], permitting the calculation of the penetration
characteristic parameter of the V-belt by comparison with the overturned arrangement.

The two central elements on the plane of symmetry (points OU and OL of Fig. 2 a) remain
attached to the pulleys while the others slide towards the ends of the contact zone. Then, we
must expect the conventional exponential distribution for the belt tension T = Tfs(t) exp (−fθ),
where f is the friction coefficient. Imposing the initial conditions ε(0,θ) = 0 and T (0,θ) = 0,
we have ε(t,θ) = εfs(t) exp (−fθ), where εfs(t) is solution of Eq. (1) in the time domain, i. e.
replacing T (t,θ) with Tfs(t).

For a constant deformation rate v, Eq. (2) yields d − d0 = vt = b εfs(t) where b = d0
+ ( )[ ] ffr 2exp12 π−− , whence we deduce that

ε(t,θ) = vt exp(−fθ) / b (3)

Now, we turn to Eq. (1) and solve for Tfs(t). Then

T(t,θ) = Sv ( ) ( )[ ]{ }εε τττ tt T −−−+ exp1  exp(−fθ) / b (4)

Suppose that the unloading starts immediately after the end of the loading period. The belt
parts that were drawn out previously must return into the wrap arc and the friction forces are
now counter-directed. Nevertheless, we cannot presume sudden sliding on the whole wrap
arcs towards the central points OU and OL, as the belt tension decreases towards the inside at
the initial moment by Eq. (4). Thus, we must expect each half arc of contact to be divided in
two parts, a sliding arc whose width increases from zero to π/2, and an adhesion arc, where ε
keeps the values reached at the end of the loading period tx (see Eq. (3)):

ε(θ) = vtxexp(−fθ) /b (5)

Let us measure now the time t from the beginning of the unloading period. The tension
increases with θ according to the Euler law along the sliding arc, T (t,θ) = Tfs(t) exp ( fθ),
while it relaxes according to the relation T (t,θ) = Sv

( ) ( )[ ] ( ){ }TTxTx ttt ττττε −−−−+ expexp1 exp (−fθ) / b along the adhesion zone by Eqs. (1),
(4) and (5). The moving boundary between the two arcs is located where the two expressions
give the same T (tension continuity):
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Sv ( ) ( )[ ] ( ){ }TTxTx ttt ττττε −−−−+ expexp1 /b = Tfs(t) exp(2fθb) (6)

where θb(t) is the angular coordinate of the boundary.
The elongation can be obtained along the sliding arc by solving Eq. (1) for ε formally:

ε(t,θ) = ( ) ( ) ( ) ( ) ( ) 




 −
−−+

















 −
−−

εε τ
θεθ

τ
εε b

fs
b

bfsfs
ttfftttt expexp0expexp (7)

where tb = tb(θ) is the inverse function of θb(t), tb(0) = 0 and εfs(0) = v tx /b. This solution
holds for t > tb and connects with (5) for t = tb(θ) (elongation continuity).

At last, assuming that the deformation speed is −v in the unloading period, Eq. (2) gives:

( ) ( ) ][2 2
Eq.(5)0 Eq.(7)00 ∫∫ ++=−=− π

θ
θ θεθεε

b

b ddrtdttvdd fsx
(8)

while Eq. (1) implies:

( )fsfsfsTfs STT ετετ ε+=+ (9)

We have thus three equations in total (6, 8, 9), in the three unknowns Tfs(t), εfs(t) and θb(t).
Owing to the non-linear nature of the problem and to the unknown moving boundary, the
solution cannot be obtained but by some iterative numerical procedure, e. g. dividing the
integration domain 0 < θ < π/2 in N equal intervals, θi+1 − θi. A tentative function tb(θi) is
assumed and Eq. (6) is easily solved for Tfs(ti), while Eq. (8) becomes an integral equation for
the unknown function εfs(ti), to be solved apart by successive approximations. The results are
introduced into Eq. (9) and the values tb(θi) are corrected for a better approximation. This
process is then repeated until the desired convergence is attained.

After the sliding arc has spread as far as the whole contact, the procedure becomes simpler,
because Eqs. (7) and (8) yield εfs(t), putting θb = π/2, tb = tb(π/2) and replacing εfs(0) exp(−fθ)
with ε [tb(π/2), θ] into Eq. (7). Then, Eq. (9) can be solved for Tfs(t).

By a proper choice of the time constants τT and τε, a very good fit of the theoretical
diagram and the load-unload experimental curve can be achieved.

It is interesting that the free span elongation speed is 0dvfs −=ε at the unloading start for
both the V- and flat belt. This property can be deduced by differentiation of Eq. (8) according
with the Leibnitz rule, minding that θb(0) = 0 and εEq.(5) does not depend on t. Thus, the initial
slope of the unloading diagram is nearly the same for the two belt arrangements, as confirmed
by the experimental plots.

Notice that the solution can be obtained in closed form in the pure elastic case (τT = τε = 0),
where we have T = Sε at any time. Equations (5) to (8) lead to the result exp (− fθb) = {[( fd0)2

− fbtb( fd0 − 2r) / tx]½ − 2r} / ( fd0 − 2r) as long as θb < π/2, and then εfs(t) and Tfs(t) can be
easily calculated. Ideal elasticity requires that the belt tension and the elongation should
vanish simultaneously at the end of the unloading period and the hysteresis cycle should close
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at the origin of the diagram (T, d). Nevertheless, this is in contrast with the experimental
results and gives a further proof of the viscoelastic effect during the static loading test.

Relaxation tests after a sudden elongation of a piece of belt were also carried out on the
testing machine (see Fig. 3 b). Basing on the time law T − T∞ = (Tx − T∞) exp (−t/τT), where
T∞ = Sε, useful additional information can be obtained about the time constant τT.

By interpretation of the experimental results in accordance with the above theory, a
realistic estimation of τT and τε can be derived, τT ≅ 27 s, τε ≅ 40 s, for nearly all the tested
belts. The equilibrium stiffness was S ≅ 60000 N.

Of course, the short time phenomena occurring in a power drive are governed by different
time constants. Reasonable hypotheses about the order of magnitude of the short time
constants can refer to some experimental results for variable frequency and/or temperature [5]
(increasing the temperature has the same effect on the viscoelastic properties as decreasing the
frequency). A crude extrapolation yields the approximate relationship τT ≅ 0.2/ω s, τε ≅ 0.3/ω
s, where ω is the angular speed of the pulley.

5. VISCOELASTIC BELT MECHANICS

Let us assume a flat belt drive in steady working. Considering the material response from the
Eulerian point of view, the constitutive equation Eq. (1) must be written as

( )ετωετω ε ′+=′+ STT T              (along the arc of contact)






 +=+

ds
dvS

ds
dTvT T

ετετ ε            (along the free span)
(10 a, b)

where primes indicate derivatives with respect to the angular coordinate θ, ω is the angular
velocity of the pulley, v is the belt velocity and s is the linear coordinate along the free span.

Neglecting the momentum flux qv2, we must have T′ = ± fT along a sliding arc and ε′ = 0
along an adhesion arc. Therefore, considering as a known quantity the left hand of (10 a) in
the first case and the right hand in the second case, it is possible to solve with respect to the
local unknown variable (ε or T). Moreover, we have dT/ds = 0 in Eq. (10 b), as no external
forces are applied along the free span, and it is possible to solve for ε(s).

An essential difference with the conventional Euler-Grashof analysis is that sliding zones
can be present at the entrance of the arc of contact in some particular conditions. As a matter
of fact, the tension of a viscoelastic belt is variable along the adhesion zone and, should the
derivative T′ become there higher than fst.T in modulus ( fst.: coefficient of static friction,
which is here assumed = f), the pulley walls could not sustain the adhesion contact and sliding
would occur. The adhesion arc will then begin where T′  = f T.

The mass conservation condition can be written in the usual form v / (1 + ε) = vP / (1 + εP),
where P is a reference point somewhere along the belt trajectory. Then, if T′ < 0 at the
boundary between an entrance sliding arc and an adhesion arc, the belt speed is certainly
increasing in the whole seating zone upstream, and vice versa. In fact, Eq. (10 a) gives T (1 ±
fωτε) = Sε at this point (where ε′ = 0), and T (1 ± fωτε) = S (ε  + ωτTε′) a little bit upstream,
and thus an increase (decrease) of T toward upstream must be accompanied by an increase
(decrease) of ε′ and then by a decrease (increase) of ε and of the belt speed.
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If the entrance sliding arcs are present, the belt speed cannot but increase at the entrance of
a driver pulley and decrease for a driven pulley, otherwise the tight free span would run faster
than the driver pulley or the slack free span would run slower than the driven pulley.

Moreover, if the belt inertia cannot be neglected (qv2), one may introduce the “dynamic”
tension T − qv2 and elongation ε − qv2/S, and minding that qv = qPvP due to the mass
conservation and (qv2)′ ≅ 0, all the equations of the present section remain unchanged,
replacing the “static” variables with their “dynamic” counterparts.

Divide the belt length in various parts as in Fig. 4, indicate with TT and TS the belt forces
in the tight and slack spans and with εR and εN the longitudinal elongation in the adhesion
regions of the driver and driven pulleys (the subscripts … R and … N will refer to the driver
and driven pulleys in the following).

Solving the belt equations for each partial domain and connecting the solutions to each
other, the following results can be obtained in a compact form for the driver and driven
pulley. Whenever the symbol ......  shows up, the left and right signs refer to the driver and
driven pulleys respectively. The angular coordinate θ is always measured from the initial
point of each examined region.

- Entrance sliding arc NNRR PPPP 2121 , if present
θf

STTT +−= e (11 a, b)

( ) ( )

( )NReNR

NReNRNReNRe

fp
NR

fpff

NR

NRTTST

p

p

S

T

θθ

θθθθθ

εε

ε

ε

ε

τ

τ
ε

−−

−−−+−+−

+

+



 −













+−

+−
=

e

eee
1

1

(12 a, b)

where NReθ  is the angular width of the entrance sliding arc, and we have put NRTp  = 1 /

( fτT NRω ) and NRpε  = 1 / ( fτε NRω ).

- Adhesion arc NNRR PPPP 3232

θθ
εε NRTNRe fp

NR
f

STNR STST
−+−






 −+= ee (13 a, b)

Fig. 4 - Belt drive regions (P1P2 = entrance sliding arc, P2P3 = adhesion arc, P3P4 = main sliding arc)
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ε = NRε (14 a, b)

- Sliding arc NNRR PPPP 4343

θθθ
εε ffp

NR
f

STNR
NRaNRTNRe STST +−−+−












 −+= eee (15 a, b)

θθθ
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θ
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eee

e
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(16 a, b)

where NRaθ  is the angular width of the adhesion arc.

- Free span downstream RNNR PPPP 1414
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 −+== eee (17 a, b)

+



































−+=

+−−
+−

NRsNRaNRT
NRe

ffp
NR

f
ST

NR S

eT θθ
θ

εεε ee

NRsNR

NRsNRNRs

fp
v

s

NR

v
s

fp

NR

NRTTf

NR

T
p

p

p

θ
τ

τθ

εε

θ

ε

ε

ε
ε

εε

ε

τ
τττ

−−

−−+−

+

+































+−

+−
−













+−
−−++

e

ee
1

1
e

1
1

(18 a, b)

where NRsθ  is the width of the main sliding arc.

Putting θ = 0 into Eqs. (12 a, b) and s = sfs into Eqs. (18 b, a) (sfs = free length), equating
the two expressions of the elongation NR1ε  and accounting for Eq. (17 a, b), we get
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(19 a, b)
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Two further relationships derive from the condition T′ / T = f at the end of the entrance
sliding arcs. Equations (13 a, b) yield

( ) ( )1
exp

−
=−

TRT

TRR
eR pT

pSf εθ                  ( ) ( )1
exp

+
=

TNS

TNN
eN pT

pS
f

ε
θ (20 a, b)

Collecting Eqs. (17 a, 17 b, 19 a, 19 b, 20 a, 20 b), we have six equations in total for the six
unknowns θeR, θsR, θeN, θsN, εR and εN. This system is non-linear and moreover the
constraints θeR ≥ 0, θeN ≥ 0 must be controlled. Only solutions by numerical procedure can be
attempted. Here, the steepest-descent method was applied to the minimization of the criterion
function Φ = 0.5 Σ(Φi2), where the Φi's are residual errors of the system equations. The
gradient vector was calculated numerically and a dicotomic convergence process was used at
each step. Whenever a negative value resulted for one of the seating arc widths, this value was
changed to zero.

Figure 5 shows the tension and elongation distribution for some values of τT and τε. The
first case refers to the estimation of the previous section and is nearly equivalent to the pure
elastic case. The second case refers to a higher value of τε and exhibits a remarkable
viscoelastic behavior. These two cases do not exhibit seating sliding arcs, which may show up
on the contrary for values of τT much smaller than τε. It is interesting that equal creep and
relaxation times (τT = τε) lead to an elastic-like behavior, since Eq. (1) implies the
proportionality of T and ε. Therefore, the viscoelastic effect becomes important when there is
a remarkable difference between the two time constants.

The numerical results indicate that a relevant reduction of the sliding speed vsliding,
proportional to ε − ε NR , can be obtained by highly viscoelastic belt chords, as the viscous

resistance retards the decrease (increase) of the belt velocity along the main sliding arc of the

Fig. 5 - Force and elongation diagrams (r = 40 mm, d0 = 250 mm,  f = 0.5, TT / TS = 2.5)
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driver (driven) pulley. This effect may yield some advantage as regards the wear reduction,
the belt durability and, though to a very small amount, also the efficiency in spite of the
additional viscous loss. By choosing the chord material accurately or embedding the chord
into a thin layer of elastomer with a high loss factor [3], the chord viscoelasticity can be
substantially upraised.

On the contrary, any viscous effect is undesired in the rubber body of the belt because of
the flexural hysteresis loss.

6. CONCLUSION

An extensive insight into the viscoelastic behavior of the traction belts is presented and the
advantages achievable in terms of wear resistance by exploiting such a physical property are
outlined. Experimental evidence of the belt viscous response is also shown.

It is remarkable that the viscoelastic resistance of polymers can be raised as much as
desired, within certain limits, by a proper manufacturing process, which opens interesting
prospects in the technology of rubber belts and in the application field.
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